柔性电子材料PEDOT:PSS的光电性能优化及机理研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    61704107
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    25.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    F0403.半导体光电子器件与集成
  • 结题年份:
    2020
  • 批准年份:
    2017
  • 项目状态:
    已结题
  • 起止时间:
    2018-01-01 至2020-12-31

项目摘要

Flexible electronic devices have important applications in many areas, such as displays, robots, wearable electronics, military, and healthcare equipment. Apart from the active materials, a flexible electronic device requires flexible electrodes. However, traditional electrode materials like Indium tin oxide (ITO) are not flexible and have high price. Therefore, there is strong demand for new materials with both high flexibility and conductivity. PEDOT:PSS exhibits excellent film-forming properties, transparency and flexibility, thus is potentially to become the next-generation transparent electrode material. However, PEDOT:PSS currently suffers from low electrical conductivity. The project aims to reveal the conductivity limit of PEDOT: PSS thin films, which hopefully could completely remove the excess insulating PSS component in the film. Novel methods will be developed for synthesis a printable PEDOT:PSS solution with improved conductivity. Next, PEDOT:PSS film and fibre will be prepared through the solution. The conductivity of PEDOT:PSS film and fibre will be further improved through solvent treatment. The project will study the effects of different polymerization condition, solvent structure, treatment temperature and other experimental conditions on the conductivity. Then characterize the film structure, PSS distribution as well as optical and electrical properties of treated PEDOT:PSS films, thus understand the microstructure and propose electrical conduction mechanism; and ultimately, explore its potential application as flexible transparent electrodes in flexible electronics like flexible optoelectronic device and wearable devices The successful development of PEDOT: PSS-based highly transparent and conductive electrode material will have important scientific significance and commercial value.
柔性电极材料是柔性电子器件中必不可少的部分,目前常用的电极材料价格昂贵且柔韧性很差,因此迫切需要开发成本低柔性好的导电材料。PEDOT:PSS具备良好的成膜性、透光性和柔性,很有潜力成为下一代柔性透明电极材料。然而其目前存在电导率低的问题。本项目旨在研发一种具有更高导电性能的PEDOT:PSS溶液,用于制备PEDOT:PSS导电薄膜和导电纤维,并对PEDOT:PSS薄膜和纤维进行溶剂处理,力争完全去除绝缘的PSS组分,达到PEDOT:PSS的极限电导率,通过对不同溶剂和处理方法对PEDOT:PSS的结构、成分分布、光电特性的影响进行表征,了解其微观形貌并提出导电机制,进一步提升PEDOT:PSS的光电性能,最终将其作为柔性透明电极和柔性导电纤维应用在柔性光电器件和可穿戴设备等柔性电子器件中。成功开发基于PEDOT:PSS的柔性电极材料具有重要的科学意义和商业价值。

结项摘要

柔性电子器件具有柔软、轻便、可大面积应用等特性,在军事、医疗、可穿戴智能设备等很多领域有广泛的应用。柔性电极材料是柔性电子器件中必不可少的部分,目前常用的无机电极材料价格昂贵且柔韧性很差,因此迫切需要开发成本低柔性好的导电材料。PEDOT:PSS具备良好的成 膜性、透光性和柔性,很有潜力成为下一代柔性透明电极材料。然而其目前存在电导率低的问题。本项目使用极性溶剂处理将PEDOT:PSS薄膜的电导率提高到大于1000 S/cm,并将其作为柔性透明电极应用在柔性有机太阳能电池中。制备的柔性太阳能电池的性能和使用传统无机电极的电池性能相差无几。此外,本项目还通过在PEDOT:PSS溶液中添加磁性纳米颗粒研制成功了一种同时具备磁性和导电性的新型多功能薄膜。此薄膜的电导率能达到1080 S/cm,同时它还具有25.5 emu/g的饱和磁性和超过40 dB的电磁屏蔽效能。这种薄膜还具有高透明度、柔韧性好、成本低、重量轻等优点。本项目还研发了导电纤维和多功能复合纤维,在柔性电子领域和智能可穿戴设备等领域有重要应用前景。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Review on applications of PEDOTs and PEDOT:PSS in perovskite solar cells
PEDOTs和PEDOT:PSS在钙钛矿太阳能电池中的应用综述
  • DOI:
    10.1007/s10854-020-03473-w
  • 发表时间:
    2020
  • 期刊:
    Journal of Materials Science: Materials in Electronics
  • 影响因子:
    --
  • 作者:
    Yijie Xia;Shuyang Dai
  • 通讯作者:
    Shuyang Dai
Fabrication of polypyrrole (PPy) nanotube electrode for supercapacitors with enhanced electrochemical performance
具有增强电化学性能的超级电容器聚吡咯(PPy)纳米管电极的制备
  • DOI:
    --
  • 发表时间:
    2019
  • 期刊:
    Journal of Materials Science: Materials in Electronics
  • 影响因子:
    --
  • 作者:
    Xuyan Liu;Jiaxing Yang;Xuyang Li;Qiang Li;Yijie Xia
  • 通讯作者:
    Yijie Xia
Solution-Processed Highly Superparamagnetic and Conductive PEDOT:PSS/Fe3O4 Nanocomposite Films with High Transparency and High Mechanical Flexibility
溶液加工的高超顺磁性和导电性 PEDOT:PSS/Fe3O4 纳米复合薄膜,具有高透明度和高机械灵活性
  • DOI:
    --
  • 发表时间:
    2017
  • 期刊:
    ACS Applied Materials & Interfaces
  • 影响因子:
    9.5
  • 作者:
    Yijie Xia;Jie Fang;Pengcheng Li;Bangmin Zhang;Hongyan Yao;Jingsheng Chen;Jun Ding;Jianyong Ouyang
  • 通讯作者:
    Jianyong Ouyang
The piezoresistive performances of the devices with fullerene-doped MEH-PPV films
富勒烯掺杂MEH-PPV薄膜器件的压阻性能
  • DOI:
    10.1007/s00542-020-05039-6
  • 发表时间:
    2021
  • 期刊:
    Microsystem Technologies
  • 影响因子:
    --
  • 作者:
    Yijie Xia;Luchao Wu;Shuhui Li;ShuaiShuai Du;Zhiyi Wei;Baifan Qian;Gaoyu Zhong
  • 通讯作者:
    Gaoyu Zhong
Fabrication of polypyrrole/multi-walled carbon nanotubes composites as high performance electrodes for supercapacitors
聚吡咯/多壁碳纳米管复合材料作为超级电容器高性能电极的制备
  • DOI:
    10.1016/j.jelechem.2020.114006
  • 发表时间:
    2020
  • 期刊:
    Journal of Electroanalytical Chemistry
  • 影响因子:
    4.5
  • 作者:
    Xuyan Liu;Lian Xue;Youcai Lu;Yijie Xia;Qiang Li
  • 通讯作者:
    Qiang Li

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码