区域种子植物物种数目估计方法的研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    39900018
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    15.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    C0305.群落生态学
  • 结题年份:
    2002
  • 批准年份:
    1999
  • 项目状态:
    已结题
  • 起止时间:
    2000-01-01 至2002-12-31

项目摘要

Many theoretical problems of Ecology came down to the number of species in ecosystems and regions. And the understanding of species number in an ecosystem or region was necessary information for conservation and sustainable utilization. In the last years, there had been some development in different scales (community, regional and global) and the estimating methods of species number. But the estimating methods of species number at regional or global scale was immature and the error resulted from different methods was significant. And these methods were mostly used in animal species such as insects. A little research had been done in the estimation of species number at regional or global scale. Compared with other vegetation data, Remote Sensing had distinct advantages. The vegetation of Donglingshan District, Beijing, Was typical, with pretty good research basis, which made it a suitable region for the research of species number estimation. We planed to compare the influence of vegetation map made based on different Remote Sensing data(TM and MSS), different sampling methods (random and MWNP) and different species-area relationship model to the number estimation of regional species, in order to find out the methods to estimate the number of regional species. The research was important for the research of the relationship of species-area relationship, the gradient of species with latitude and altitude, species number and biomass, productivity, rainfall and other environmental factors and the survey, evaluation of biodiversity.Long term plot(250m×200m), temporary transect(200m×40m) and quadrat were adopted in the research and all the plots were divided into small quadrat(5m×5m) in order to compare the influence of different sampling methods and species-area relationship model to the estimation of number of regional seed plant species. And the communities were classified and the species diversity in the communities and ecotones was studied.The result showed that the property of high species diversity in the ecotones was not significant. Different species diversity(richness and evenness) was different in different communities, different levels(trees, shrubs and grass) and different spatial scales(5m×5m and 25m×25m). Only at the scale from 5m×5m to 10m×10m in the ecotone of Quercus liaotungensis and Juglans mandshurica ,the scale of 20m×30m in the ecotone of Quercus liaotungensis and Betula dahurica, the scale from 5m×5m to 10m×10m in the ecotone of mixed shrubs and mixed deciduous broadleaved forest, the species richness was more than that of the corresponding levels in the typical communities.The powers of all the five statistics increase as distance order j increase against inhomogeneous random pattern. They decrease for Pi and Ce and increase for Po,Jz and Eb against regular and Poisson cluster patterns. Po,Jz and Eb can reach high powers with the third or higher order distances in most cases..Nestedness had been suggested to have implications for biological conservation, particularly in relation to SLOSS. It was suggested that Patil and Taillie's right-tail-sum diversity should be the first choice and Hurlbert-Smith-Grasssle's expected diversity be the second in diversity ordering.
考察不同分辨率的卫星遥感数据、不同的植被抽样方法以及不同的种-面积关系模型对区域肿又参镂镏质抗兰频挠跋欤佣范ê鲜实墓兰品椒āU舛灾?面积关系、物种数目的纬度梯度和海拔高度梯度、物种数目与生物量、生产力以及降水量和其他环境变量之间的关系等理论问题的深入研究、以及生物多样性的检测与评价都具有重要意义。

结项摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

刘灿然的其他基金

利用3S技术研究北京山区植物群落多样性的空间分布格局
  • 批准号:
    39770131
  • 批准年份:
    1997
  • 资助金额:
    12.0 万元
  • 项目类别:
    面上项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码