波-爱凝结研究中若干前沿问题的理论探索
项目介绍
AI项目解读
基本信息
- 批准号:19975009
- 项目类别:面上项目
- 资助金额:13.0万
- 负责人:
- 依托单位:
- 学科分类:A2503.统计物理与复杂系统
- 结题年份:2002
- 批准年份:1999
- 项目状态:已结题
- 起止时间:2000-01-01 至2002-12-31
- 项目参与者:马永利; 温涛; 明灯明; 黄静宜; 侯宗义;
- 关键词:
项目摘要
In this study it was pointed out that the functional integral approach in quantum statistics (FIA) is not only a method, but also can be its third formulation. A. It covers the field of statistical mechanics; B. It has sound mathematical bases; C. Our theory in two points improved the Hubbard theory: 1. The dimensionality of the infinite dimensional integrals was reduced in principle; 2. There is no need for the infinite dimensional canonicaltransformation, which is necessary and difficult in Hubbard theory. D. We have solved the famous divergence (mathematical break down) problem in the functional integral approach of Anderson model. E. A possible investigation on phase transition by this formulation has been made. It further suggests us to study the exact solution of Bose-Einstein condensation (BEC) by FIA. We also proposed an exactly soluble model, obtained its exact solution and BEC distribution for an interacting system. Its shifts of Tc by interaction were studied. This is a hot field fighting by some PRL papers. Based on our exact solution, under a trustable approximation, our result will be exact the same as that of Kerson Huang in PRL This set a sound foundation for further studies on the third formulation in quantum statistics. Besides,the thermodynamic properties, distributions of ideal Bose gases in harmonic traps were studied analytically and numerically. Detailed investigation of the BEC stabilities of attractive Bose system in anisotropic traps, their instability boundaries by Bogoliubov transformation and the corresponding problems in low dimensions have been made. This project also made a series and "highly original studies" on the inverse problems of emissivity etc. The three rapid communications in PRE were highly appreciated by referees. Then they formed a new project supported by NSFC.
发展适合非均匀玻色体系的量子统计中泛函积分理论,越出平均场理论近似.进而发展其泛函积分理论的严格可解模型.研究越出博格柳玻夫近似的理论和方法,在元激发谱的国际争论和泛函积分理论研究BEC的领域中取得领先结果和地位.建议一个基于BEC的高温超导模型,用反演理论研究约束几何下液氨gama线后移及建议与BEC有关的效应和应用等.
结项摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--"}}
- 发表时间:{{ item.publish_year || "--" }}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--"}}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ patent.updateTime }}
其他文献
其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--" }}
- 发表时间:{{ item.publish_year || "--"}}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--" }}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}

内容获取失败,请点击重试

查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:
AI项目摘要
AI项目思路
AI技术路线图

请为本次AI项目解读的内容对您的实用性打分
非常不实用
非常实用
1
2
3
4
5
6
7
8
9
10
您认为此功能如何分析更能满足您的需求,请填写您的反馈:
戴显熹的其他基金
兼容奇性态量子力学,新逆问题和量子统计新严格解研究中的前沿问题研究
- 批准号:10675031
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:面上项目
高维有相变统计问题严格解,量子统计第三种表述和玻-爱凝结前沿问题
- 批准号:10375012
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:面上项目
比辐射率反演,极低温物性和一批逆问题的统一理论
- 批准号:10174016
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
中体(中等粒子数的量子体系)统计的前沿问题研究
- 批准号:19575009
- 批准年份:1995
- 资助金额:6.0 万元
- 项目类别:面上项目
物理学中奇性与“几何化,数论消发散方法“等之研究
- 批准号:18670725
- 批准年份:1986
- 资助金额:0.5 万元
- 项目类别:面上项目
相似国自然基金
{{ item.name }}
- 批准号:{{ item.ratify_no }}
- 批准年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}
相似海外基金
{{
item.name }}
{{ item.translate_name }}
- 批准号:{{ item.ratify_no }}
- 财政年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}