分拆函数与模形式系数同余问题
项目介绍
AI项目解读
基本信息
- 批准号:11026080
- 项目类别:数学天元基金项目
- 资助金额:3.0万
- 负责人:
- 依托单位:
- 学科分类:A0102.解析数论与组合数论
- 结题年份:2011
- 批准年份:2010
- 项目状态:已结题
- 起止时间:2011-01-01 至2011-12-31
- 项目参与者:罗皓; 郭秋娟; 朱雅丹;
- 关键词:
项目摘要
本项目将结合Galois表示理论和Hecke理论研究弱全纯模形式系数的同余关系,从计算的角度给出一部分弱全纯模形式系数的同余关系的具体算法,研究的结果可以应用到一些具体的分拆函数上以发现具体的同余关系。
结项摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--"}}
- 发表时间:{{ item.publish_year || "--" }}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--"}}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ patent.updateTime }}
其他文献
Arithmetic properties of a partition pair function
配分对函数的算术性质
- DOI:10.1142/s1793042114500468
- 发表时间:2014
- 期刊:International Journal of Number Theory
- 影响因子:0.7
- 作者:陈士超
- 通讯作者:陈士超
Ramanujan-type congruences for certain generating functions
某些生成函数的拉马努金型同余式
- DOI:10.1007/s10986-013-9215-7
- 发表时间:2013
- 期刊:Lithuanian Mathematical Journal
- 影响因子:0.4
- 作者:陈士超
- 通讯作者:陈士超
清道夫受体SR-AⅡ基因定点突变的研究
- DOI:--
- 发表时间:--
- 期刊:实用医学杂志
- 影响因子:--
- 作者:杨红;田菲;陈士超;戴亚蕾
- 通讯作者:戴亚蕾
基于RTK的毫米波导引头对动目标性能评估方法
- DOI:10.1016/j.devcel.2021.02.007
- 发表时间:2019
- 期刊:战术导弹技术
- 影响因子:--
- 作者:陈士超;卢福刚;王军;刘明;刘钧圣
- 通讯作者:刘钧圣
毫米波导引头目标再捕获方法
- DOI:10.16358/j.issn.1009-1300.2019.8.053
- 发表时间:2019
- 期刊:战术导弹技术
- 影响因子:--
- 作者:陈士超;卢福刚;刘钧圣;王军;刘明
- 通讯作者:刘明
其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--" }}
- 发表时间:{{ item.publish_year || "--"}}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--" }}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
内容获取失败,请点击重试
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:
AI项目摘要
AI项目思路
AI技术路线图
请为本次AI项目解读的内容对您的实用性打分
非常不实用
非常实用
1
2
3
4
5
6
7
8
9
10
您认为此功能如何分析更能满足您的需求,请填写您的反馈:
陈士超的其他基金
模形式的算术性质及其在组合数论中的应用
- 批准号:11771121
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
模形式的算术性质及其应用
- 批准号:11101123
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似国自然基金
{{ item.name }}
- 批准号:{{ item.ratify_no }}
- 批准年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}
相似海外基金
{{
item.name }}
{{ item.translate_name }}
- 批准号:{{ item.ratify_no }}
- 财政年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}