离子通道运输的原子到连续尺度计算方法

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    91230105
  • 项目类别:
    重大研究计划
  • 资助金额:
    65.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    A0504.微分方程数值解
  • 结题年份:
    2015
  • 批准年份:
    2012
  • 项目状态:
    已结题
  • 起止时间:
    2013-01-01 至2015-12-31

项目摘要

Voltage-gated K+ ion channels (Kv channels) are fundamentally important cellular machinery present in all animal cells and key components in the generation and propagation of electrical impulses in the nervous system. The accurate computer simulation of ion transport through Kv channels would be a major advance in biomedical research, allowing for the efficient design of novel drugs for a wide variety of pharmaceutical applications. However, the time scales necessary to study channel gating (~ms-s) is much longer than what can currently be reached via conventional atomistic simulations. Thus, new advanced algorithmic developments in multi-scale simulation techniques are urgently needed to study ion transport phenomena in biological systems..We propose here a novel multi-scaling technique based on algorithms recently successfully developed by us. Our approach goes significantly beyond earlier multi-scaling algorithms which usually involve a reduced representation of the biological system via use of coarse-graining techniques. In our technique, the channel is retained in its fully atomistic representation in both the fast (implicit) and detailed (explicit) modes, allowing for a fast and simple switching without loss of precision. This accuracy is the key to the success of capturing long-scale events of ion channel gating. The multi-scale model involves two stages: A slow mode with a fully atomistic representation of the ion channel and its environment. In the fast mode, implicit solvent models such as the hybrid electrostatic model using a reaction field, and the generalized Born implicit membrane model, will be used. These models, in which the solvent is represented as a polarizable continuum, allow for 30-100 times increase in the sampling speed of the ion channel dynamics, key for reaching ~ms timescales. The final level will use the PNP model of ion transport, with the MD simulation used to dynamically update the diffusion and dielectric constant in the PNP equations. PNP will allow to directly compare the simulations results with experimental conductance measurements for these class of ion channels and provide the benchmark for the entire project. .Our proposed multi-scale algorithm - based on proven simulation techniques developed by us – will provide a novel way to overcome the severe time-scale problem in simulating ion channels and will be widely applicable to numerous other systems of fundamental biological importance, such as transporters, pumps and signaling proteins.
电压门控钾离子(Kv)通道是动物细胞内极其重要的装置,例如是神经系统中电脉冲产生和传播的重要部件。Kv通道的研究,特别是高精度模拟有助于高效的新药设计。由于通道开闭的时间尺度(毫秒至秒)远超传统的原子模拟可达到的时间,多尺度模拟算法的建立与应用是非常急迫的问题。本项目将基于负责人过去的成果提出新型有效的多尺度算法。Kv通道模型包含二个时间尺度:慢模式使用全原子表示离子通道,膜和溶剂。在快模式中,将使用反应场混合模型和广义Born隐膜模型,膜和溶剂描述为极化的连续介质.这种混合方法可以将采样效率提高30~100倍,是达到毫秒时间尺度的关键所在。体系中的离子通道在隐式和显式模式下将保持全原子表示,在保持精度下在两个模式间快速和简单的转换。在宏观层次使用离子输运的PNP模型,并利用分子动力学模拟更新PNP中的扩散系数和介电常数。PNP将可以直接比较离子通道电导率的实测数据,为本项目提供基准数据。

结项摘要

这个项目基金主要用在开发先进方法研究离子通道和膜蛋白问题。在这些问题上,我们已经取得了一些重大突破,比如,在模拟中首次直接观察到钠离子通道中离子过膜现象,同样在幽门螺旋杆菌的UreI型通道研究中也直接观察到尿素分子过膜。.此外,我们通过直接模拟多肽分布过程提出了SecY易位子在界面相互作用下的一种可能工作机制。 使用这些方法,我们同时也研究了抗菌肽在生物膜膜中如何自发形成通道的过程。在隐式水静电作用模型模拟方法中,我们也做了一些工作。.目前我们还在进行许多后续研究,包括钠离子通道和UreI型尿素通道中药物分子与靶点如何结合及相互作用的模拟研究。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel
通过细菌电压门控钠通道开放构象的离子传输的分子动力学
  • DOI:
    10.1073/pnas.1214667110
  • 发表时间:
    2013-04-16
  • 期刊:
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  • 影响因子:
    11.1
  • 作者:
    Ulmschneider, Martin B.;Bagneris, Claire;Wallace, B. A.
  • 通讯作者:
    Wallace, B. A.
well-conditionedhypersingular boundary element method for electrostatic potentials in thepresence of inhomogeneities within layered media
层状介质中存在不均匀性时静电势的良条件超奇异边界元方法
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    Communication in Computational Physics
  • 影响因子:
    --
  • 作者:
    Zinser, Brian;Cai, Wei
  • 通讯作者:
    Cai, Wei
Theoretical Studies on the Mechanism, Enantioselectivity, and Axial Ligand Effect of a Ru(salen)-Catalyzed Asymmetric Cyclopropanation Reaction
Ru(salen)催化不对称环丙烷化反应机理、对映选择性和轴向配体效应的理论研究
  • DOI:
    10.1021/om400956z
  • 发表时间:
    2014-07
  • 期刊:
    Organometallics
  • 影响因子:
    2.8
  • 作者:
    Xiao-Lei Wang;Shaoyong Lu;Yi-Lei Zhao;Jian Zhang
  • 通讯作者:
    Jian Zhang
Mechanisms of molecular transport through the urea channel of Helicobacter pylori.
幽门螺杆菌尿素通道的分子转运机制
  • DOI:
    10.1038/ncomms3900
  • 发表时间:
    2013
  • 期刊:
    NATURE COMMUNICATIONS
  • 影响因子:
    16.6
  • 作者:
    McNulty, Reginald;Ulmschneider, Jakob P.;Luecke, Hartmut;Ulmschneider, Martin B.
  • 通讯作者:
    Ulmschneider, Martin B.
Accuracy and efficiency in computing electrostatic potential for an ion channel model in layered dielectric/electrolyte media
计算层状电介质/电解质介质中离子通道模型静电势的准确性和效率
  • DOI:
    10.1016/j.jcp.2013.12.017
  • 发表时间:
    2014-02
  • 期刊:
    Journal of Computational Physics
  • 影响因子:
    4.1
  • 作者:
    Huimin Lin;Huazhong Tang;Wei Cai
  • 通讯作者:
    Wei Cai

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码