基于牙釉质微观结构的仿生材料制备

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    11872240
  • 项目类别:
    面上项目
  • 资助金额:
    63.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    A1003.天然生物材料、仿生与运动生物力学
  • 结题年份:
    2022
  • 批准年份:
    2018
  • 项目状态:
    已结题
  • 起止时间:
    2019-01-01 至2022-12-31

项目摘要

Natural structural materials are increasingly recognized as a potent source of inspiration for advanced engineering materials. Tooth enamel is an excellent example of a natural material that achieves simultaneous resistance to wear and fracture. These properties are generally mutually exclusive in engineering materials. The secret to the performance of most natural materials is their hierarchical microstructure. However, tooth enamel achieves its incredible performance from the decussation pattern of the enamel rods, which bestow its ability to divert and arrest cracks into regions of less threat. Preliminary investigations show that the complexity of the decussation patterns in mammals is scaled with the magnitude of bite forces. In particular, the microstructure of enamel from the hyena and sea otter teeth exhibits a "zig-zag" decussation pattern that apparently enables these mammals to crush bone and hard mollusks without fracture over the animal’s life. The decussation patterns have been optimized by Nature over thousands of years of evolution and could inspire the next generation of advanced engineering materials. .The proposed investigation will evaluate the microstructure and decussation patterns of tooth enamel, and use that knowledge to develop first generation engineered materials using additive manufacturing. Specifically, the three-dimensional decussation patterns of the enamel will be characterized for the molars of human, spotted hyena and sea otter teeth. The mechanical behavior of the enamel will be evaluated in terms of the decussation pattern design, and its resistance to crack growth under monotonic and cyclic loading. Three dimensional solid models of the enamel microstructures will be developed and used to produce compatible engineered material systems using additive manufacturing approaches that incorporate ceramics, composites and metals. The mechanical behavior of these bio-inspired materials will be evaluated in terms of their resistance to fatigue crack growth and fracture. The participating mechanisms to the crack growth resistance will be compared with those in the biological system and the key microstructural parameters of the decussation pattern geometry (e.g. rod bias angle, rod packing density, decussation wavelength, etc.) will be distinguished, which will enable further optimization. Results of this investigation will develop fundamental scientific knowledge that will potentially transform the field of advanced structural materials by identifying microstructures and methods of manufacturing that lead to the development of the next generation of advanced structural materials for a variety of applications.
天然生物硬组织材料具备独特的多层结构,不仅具备很高的强度和耐磨性,同时具备很高的韧性,它为先进材料设计提供了新的创新源泉。牙釉质具有独特的绞釉结构,能有效阻止内部裂纹扩展,哺乳动物牙釉质绞釉结构与其咬合力有直接的关系。本项目旨在探究牙釉质交叉绞釉结构形态,研究其增韧机制,结合增材制造技术制备新型仿生材料。具体研究内容包括:首先选取人、鬣狗和海狸等三种牙釉质作为研究对象,通过显微观察微观结构和绞釉形态;通过断裂力学测试方法评价这三种牙釉质的力学性能,分析绞釉形态几何参数与力学性能之间的关系;基于天然牙釉质的微观形态,利用常规陶瓷、金属和高分子材料,结合数值模拟和增材制造技术设计并制备具有特殊绞釉结构的新型仿生材料;利用断裂力学测试方法评价新型材料的力学行为,分析绞釉几何参数与材料力学行为的关系,并进一步优化仿生材料的设计。通过研究生物材料微结构与力学行为的关系,探索仿生材料设计与制备新方法。

结项摘要

生物材料拥有很高的强度和韧度,仿照生物组织材料的微观结构开展仿生材料设计与制备,为我们开发新型材料提供了一条可行的新途径。本项目旨在构建一种新的仿生材料设计理念,即基于牙釉质绞釉的增韧机制的仿生材料。采用高倍电子扫描显微镜SEM和透射电镜TEM观察多种生物材料,包括牙釉质绞釉、真皮盔甲和鱼鳞的微观形态,分析其材料成分,采用特定的几何形态特征参数定量描述生物材料的微观形态。通过数值建模分析,系统研究绞釉的几何形态、微观结构对牙釉质增韧效果的影响,揭示Parazone和Diazone对牙釉质裂纹生长的作用。通过模拟牙釉质绞釉的微观结构,揭示了牙釉质曾韧机制。结合目前最新的增材制造技术,制备高硬度、高韧度新型材料。具体研究内容包括:通过观察几种不同牙釉质绞釉微观结构形式,确定绞釉形态关键几何参数;通过数值模拟和力学实验,建立绞釉微观结构参数与材料力学行为之间的关系;开展新型材料微结构的设计,并采用增材制造技术,使用陶瓷三维打印机制备具有三维交织微柱结构的多种仿生材料,开发出了具有高强度、高韧度的仿生材料,并通过力学测试验证设计参数与材料断裂韧度的一致性。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-time illumination adjustment for video deflectometers
视频偏转仪的实时照明调整
  • DOI:
    doi:10.1002/stc.293
  • 发表时间:
    2022
  • 期刊:
    Struct Control Health Monit.
  • 影响因子:
    --
  • 作者:
    Da Yang;Shuiqiang Zhang;Shuo Wang;Qifeng Yu;Zhilong Su;Dongsheng Zhang
  • 通讯作者:
    Dongsheng Zhang
Designed for resistance to puncture: The dynamic response of fish scales
专为抗穿刺而设计:鱼鳞的动态响应
  • DOI:
    --
  • 发表时间:
    2019
  • 期刊:
    Journal of the mechanical behavior of biomedical materials
  • 影响因子:
    --
  • 作者:
    S. Ghods;S. Murcia;E.A. Ossa;Dwayne Arola
  • 通讯作者:
    Dwayne Arola
Multi-frequency Fused Lock-in Thermography in Detecting Defects at Different Depths
多频熔融锁定热成像技术检测不同深度的缺陷
  • DOI:
    --
  • 发表时间:
    2022
  • 期刊:
    Journal of Nondestructive Evaluation
  • 影响因子:
    2.8
  • 作者:
    Yanjie Wei;Yimin Ye;Hongjun He;LI Ding;Dongsheng Zhang
  • 通讯作者:
    Dongsheng Zhang
Interfibril hydrogen bonding improves the strain-rate response of natural armour
原纤维间氢键可改善天然装甲的应变率响应
  • DOI:
    10.1098/rsif.2018.0775
  • 发表时间:
    2019
  • 期刊:
    Journal of The Royal Society Interface
  • 影响因子:
    --
  • 作者:
    Dwayne Arola;S. Ghods;C. Son;S. Murcia;E.A. Ossa
  • 通讯作者:
    E.A. Ossa
Interaction of rod decussation and crack growth in enamel
牙釉质中棒的交叉和裂纹生长的相互作用
  • DOI:
    10.1080/10255842.2022.2084333
  • 发表时间:
    2022
  • 期刊:
    Computer Methods in Biomechanics and Biomedical Engineering
  • 影响因子:
    1.6
  • 作者:
    Siyong Liu;Yan Xu;Bingbing An;Dongsheng Zhang
  • 通讯作者:
    Dongsheng Zhang

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码