带应力string方法及其在材料计算中的应用

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    11001244
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    17.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    A0504.微分方程数值解
  • 结题年份:
    2013
  • 批准年份:
    2010
  • 项目状态:
    已结题
  • 起止时间:
    2011-01-01 至2013-12-31

项目摘要

在物理、化学、生物等过程中有一类重要的小概率事件,如晶体成核、化学反应、蛋白质构象变化等。找出这类小概率事件的最优路径、过渡态、转移概率等对于材料性质、生物过程、药物设计等研究具有十分重要的指导作用。由于时间尺度的分离,直接用分子动力学模拟,计算量非常庞大。由鄂维南教授等提出的string方法是处理这类小概率事件的有效方法之一。我们已将string方法应用到晶体材料的位错运动研究中,初步给出了位错运动的一些规律。鉴于应力在晶体位错运动中的重要作用,本课题拟设计一个新的方法,将应力的影响结合进string方法,使得到的最优路径、过渡态和转移概率等结果能反映应力在变化过程中的作用。我们将以晶体铝中的螺位错运动为例,更系统的研究应力下的位错运动规律,预测材料性质,为材料设计提供理论指导。进而,可以把该方法应用到其它小概率事件研究,帮助人们更深刻的理解物理、化学、生物过程及相关性质。

结项摘要

在物理、化学、生物等过程中有一类重要的小概率事件,如晶体成核、化学反应、分子构象变化等。找出这类小概率事件的最优路径、过渡态、转移概率等对于材料性质、生物过程、药物设计等的理解与应用都有重要的意义。由鄂维南教授等提出的string方法是研究这类小概率事件的一个常用的方法。我们用零温度string方法系统的研究了无外力作用晶体铝中螺位错交滑移运动机制,发现位错运动机制与位错的长度及运动前后相对位置有关,结果说明一种不常见的Fleischer交滑移机制应该是存在的。在此基础上,我们对带有螺位错的晶体铝在初始滑移平面施加不同大小、不同方向的外力(Escaig stresses),得到了不同外力作用下的稳定状态。研究发现,在初始滑移平面上施加外力,可以影响螺位错部分位错之间的距离,结果与已有理论吻合。把得到的稳定状态用于带应力的string方法,得到了不同外力作用下螺位错交滑移的最优路径和过渡态。外力使螺位错交滑移路径势能面失去了原有的对称性,也改变了势垒的大小,但并未改变交滑移运动的运动机制。这对进一步研究是什么决定了位错交滑移运动机制有一定的意义。另外不变测度也可以用来研究小概率事件。我们用最大熵原理与分片线性空间结合,提出一种求解一维映射不变测度的新方法。理论与数值方法证明该方法计算量小,精度高,该方法有很大的应用前景。目前我们已把该方法推广到二维问题。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Maximum Entropy Method Based on Piecewise Linear Functions for the Recovery of a Stationary Density of Interval Mappings
基于分段线性函数的区间映射平稳密度恢复的最大熵方法
  • DOI:
    10.1007/s10955-011-0366-9
  • 发表时间:
    2011
  • 期刊:
    Journal of Statistical Physics
  • 影响因子:
    1.6
  • 作者:
    Ding; Jiu;Jin; Congming;Rhee; Noah H.;Zhou; Aihui
  • 通讯作者:
    Aihui
Dislocation cross-slip mechanisms in aluminum
铝中的位错交叉滑移机制
  • DOI:
    10.1080/14786435.2011.602030
  • 发表时间:
    2011
  • 期刊:
    Philosophical Magazine
  • 影响因子:
    1.6
  • 作者:
    Jin; Congming;Xiang; Yang;Lu; Gang
  • 通讯作者:
    Gang

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

最大熵方法在计算二维不变测度中的应用
  • DOI:
    --
  • 发表时间:
    2017
  • 期刊:
    浙江理工大学学报(自然科学版)
  • 影响因子:
    --
  • 作者:
    张茹;徐春伟;靳聪明
  • 通讯作者:
    靳聪明
String方法在丙氨酸多肽链中的应用
  • DOI:
    --
  • 发表时间:
    2016
  • 期刊:
    浙江理工大学学报(自然科学版)
  • 影响因子:
    --
  • 作者:
    贾红霞;靳聪明
  • 通讯作者:
    靳聪明
A maximum entropy method for solving the boundary value problem of second order ordinary differential equations
求解二阶常微分方程边值问题的最大熵法
  • DOI:
    10.1063/1.5029856
  • 发表时间:
    2018
  • 期刊:
    Journal of Mathematical Physics
  • 影响因子:
    1.3
  • 作者:
    靳聪明;Jiu Ding
  • 通讯作者:
    Jiu Ding
A Meshfree Maximum Entropy Method for the Computation of Invariant Measures
计算不变测度的无网格最大熵方法
  • DOI:
    10.1371/journal.pone.0205971
  • 发表时间:
    --
  • 期刊:
    East Asian Journal on Applied Mathematics
  • 影响因子:
    1.2
  • 作者:
    房婷婷;贾红霞;靳聪明;Jiu Ding
  • 通讯作者:
    Jiu Ding
A Piecewise Linear Maximum Entropy Method for Invariant Measures of Random Maps with Position-Dependent Probabilities
具有位置相关概率的随机映射不变测度的分段线性最大熵方法
  • DOI:
    10.1142/s0218127418501547
  • 发表时间:
    2018
  • 期刊:
    International Journal of Bifurcation and Chaos
  • 影响因子:
    2.2
  • 作者:
    靳聪明;Tulsi Upadhyay;Jiu Ding
  • 通讯作者:
    Jiu Ding

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

靳聪明的其他基金

具有缺陷的石墨超滑机制建模与模拟
  • 批准号:
    11571314
  • 批准年份:
    2015
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码