一种基于细菌蛋白质N-糖基化系统的新型生物技术制备肿瘤糖抗原-蛋白缀合疫苗

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    81302682
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    23.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    H3404.生物技术药物
  • 结题年份:
    2016
  • 批准年份:
    2013
  • 项目状态:
    已结题
  • 起止时间:
    2014-01-01 至2016-12-31

项目摘要

Malignant neoplasm (also known as cancer) remains a leading threat to human health. The conventional therapies including radiation, chemotherapy and surgery cannot always cure cancer completely and the recurrence is often observed after successful early treatments. With the developments in the cancer-related research fields, cancer immunotherapy is now becoming an effective complementary therapy to the conventional ways. Cancer immunotherapy is to stimulate the patient's immune system to kill tumor cells either through immunization of the patient with a cancer vaccine in which case the immune system is trained to recognize tumor cells as targets to be destroyed or through the administration of therapeutic antibodies in which case the immune system is recruited by the antibodies to destroy tumor cells. Tumor-associated carbohydrate antigens (TACAs) are expressed aberrantly on the surface of tumor cells. In addition to acting as cancer biomarkers, TACAs can also play critical roles in the cancer pathologic process, making them obvious targets for the development of cancer vaccines. However, carbohydrates are T cell-independent type II antigens and by themselves cannot induce the activation of T cells. Without the involvement of T cells, the memory B cells and the IgM to IgG class switch cannot be induced. A major strategy to enhance the immunogenicity of carbohydrate antigens is to conjugate them to a carrier protein, forming conjugate vaccines. Currently, many researchers are focusing on the development of anti-cancer TACA-protein conjugate vaccines, and some such vaccines have showed great promise in clinical trials. The most widely used method for preparing such conjugate vaccines is the chemical conjugation that involves the preparation of both TACAs and carrier proteins and the subsequent ligation between two components. However, the chemical conjugation still has some drawbacks of which the fatal problems are the poor reproducibility of the conjugation reactions and non-site-specific coupling of TACAs which may cause heterogeneities and ambiguities of the vaccines in structure and composition. In the present study, we will establish a platform for the production of anti-cancer TACA-protein conjugate vaccines using engineered E. coli. We will first genetically engineer E. coli lipopolysaccharide biosynthetic pathway, and subsequently introduce both the genes that can drive the assembly of TACAs and the bacterial protein N-glycosylation system from C. jejuni that automatically ligates the pre-assembled TACA onto a carrier protein inside E. coli cells. Using this platform, we plan to produce conjugate vaccines toward seven important TACAs in one-step fermentation that will greatly reduce the production cost. Furthermore, to enhance the immunogenicity of the conjugate vaccines, we will also optimize the carbohydrate loading amount on the carrie protein and insert a MHC II-restricted T cell peptide in the region close to the glycosylation site.
肿瘤免疫疗法正逐步成为肿瘤治疗的有效辅助甚至替代手段,基于肿瘤疫苗的主动免疫治疗是免疫疗法的一种重要方式。肿瘤糖抗原因在肿瘤细胞表面异常表达并参与肿瘤的生长和转移,成为研制肿瘤疫苗的理想靶分子。然而糖抗原本身无法激活T细胞,将肿瘤糖抗原与具有较强免疫原性的蛋白载体缀合可激活T细胞并进一步刺激B细胞分泌IgG抗体。目前该策略已被广泛应用并取得了一些重要成果。化学合成是当前普遍使用的制备方法,但存在一些固有缺陷(产物结构不均一、过程复杂等)。本项目针对7种重要肿瘤糖抗原,建立一种基于原核蛋白N-糖基化系统的工程化大肠杆菌制备肿瘤糖抗原-蛋白缀合疫苗的技术体系。大肠杆菌的改造包括对其脂多糖合成路径的改造及之后引入肿瘤糖抗原合成基因和原核蛋白N-糖基化系统,在大肠杆菌体内实现肿瘤糖抗原与载体蛋白自动偶联。项目旨在利用这种新型生物技术制备肿瘤糖抗原-蛋白缀合疫苗,提高疫苗免疫活性并降低制备成本。

结项摘要

肿瘤相关糖抗原(Tumor-associated carbohydrate antigens, TACAs)是一类重要的肿瘤抗原。随着糖生物学、基因组学和生物信息学的迅速发展,越来越多的糖基转移酶基因被发现和鉴定。使部分肿瘤糖抗原可以在体外(in vitro)利用酶法进行合成。本项目将在大肠杆菌中引入了两套细菌蛋白N-糖基化系统,即寡糖转移酶PglB和最近新发现的N-葡萄糖转移酶(NGT)。前者可将与类脂链接的寡糖转移到新生肽链的N-糖基化位点,后者则利用UDP-Glc为供体对新生或者折叠后的蛋白进行糖基化。相对于PglB,NGT是目前唯一已知的以NDP-糖为供体,并在胞浆中可对新生或成熟蛋白进行糖基化修饰的N-糖基转移酶,因此具有很大的应用前景。目前,我们已经利用来自Actinobacillus pleuropneumoniae来源的NGT在胞外合成了携带多个N-Glc(多达10个)的均一化糖蛋白。的一个同时,我们克隆表达了所有成UDP-GlcNAc,UDP-GalNAc,GDP-Fucose,CMP-sialic acid等糖供体合成基因,以及LewisX,LewisY,Globo H,Gb5,GM2,GD2,GD3合成的全部基因,并在体外进行了活性鉴定。然而在胞内组装肿瘤相关糖抗原GM2时,我们发现同一启动子调控一组基因时,往往会照成下游尤其时末端基因表达严重衰减,导致GM2中间产物的大量积累(不均一化)。同时,能够适应肿瘤相关糖抗原的跨膜转运系统(Wzx)需要经过大量筛选,依然存在转运效率低下等问题。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码