组合编码与密码中的若干理论问题研究
项目介绍
AI项目解读
基本信息
- 批准号:61272424
- 项目类别:面上项目
- 资助金额:20.0万
- 负责人:
- 依托单位:
- 学科分类:F0206.信息安全
- 结题年份:2013
- 批准年份:2012
- 项目状态:已结题
- 起止时间:2013-01-01 至2013-12-31
- 项目参与者:邱建林; 范翠玲; 陈亮; 李凤英; 巩俊卿; 刘振; 于志华; 杜娟; 王二威;
- 关键词:
项目摘要
Optical orthogonal codes,authentication codes and attribute-based cryptography are important topics in the network communication and network security. Giving combinatorial characterizations and constructions for theses codes and obtaining some optimal codes from different branches of combinatorial mathematics will not only richen combinatorial design theory but also improve the ability of network communication and confidentiality . This project plans to investigate the theories about combined coding and cryptography, which mainly include the following: .(1) Performance analysis of signature codes; design and combinatorial construction of 2D-VWOOC (Variable Weight Optical Orthogonal Code) for OCDMA (Optical Code Division Multiple Aceess) system;.(2) Combinatorial characterizations and constructions of optimal splitting authentication codes against spoofing attacks of higher order; performance analysis of the impersonation attack probability and substitutional attack probability;.(3) Construction of attack model, design of cryptographic schemes and security proofs in attribute-based encryption system..We have pretty good research foundation in the above subjects. In the aspect of theory, the research plays a key role in science; In the aspect of practice, it provides the coding for low layers and cryptographic protocols for application layer. Hence the research results of the project can be widely used in network communications and protocols.
光正交码、认证码和属性密码是组合编码与密码中的几个重要课题。从组合数学的不同分支给出这些码组合刻划、组合构造并得到一些最优码不仅可以丰富组合设计理论,而且能够提高和改善网络通信和保密的功能。本项目拟对该课题三个方面的理论问题展开研究,主要研究问题包括:.(1)光码分多址(Optical Code Division Multiple Aceess,OCDMA)系统中地址码性能分析和二维变重量光正交码的设计以及组合构造;.(2)抗高价欺骗攻击的分裂认证码的组合刻划、组合构造以及性能分析;.(3)基于属性的加密系统中敌手能力的模型构造、方案设计及安全性证明。.我们在这方面已有较好的研究基础。理论上,该课题是对组合编码与密码方面的重要研究,具有重要的科学意义;实践上,该研究能够为网络通信和网络安全提供底层与应用层的编码和密码协议支持,在网络通信与协议中都有重要的应用。
结项摘要
光正交码、认证码和属性密码是组合编码与密码中的几个重要课题. 从组合数学的不同分支给出这些码组合刻划、组合构造并得到一些最优码不仅可以丰富组合设计理论,而且能够提高和改善网络通信和保密的功能. 本项目主要研究了编码密码学中一些理论问题包括双重重量码、光正交码、Skew循环码、无逗点码等码的组合构造和存在性问题. 另外我们也研究了区组可迁的t-设计存在性问题. 主要包括以下问题:.1. 研究了广义Kirkman方GKS3(6n; 1, 1; 3n-1)的存在性,建立了它的谱系。应用其得到了一类具有完美(1,1)覆盖参数为(2, 2(3n-1), 3, 6n, 8) 的最优双重重量码;.2. 利用循环线性码和跳频序列研究了光正交码的联合构造,应用这个构造得到 一些新的最优或渐进最优光正交码和跳频序列;.3. 研究了完美2维最多一个脉冲的变重量光正交码AM-OPPW 2-D VWOOC的组合构造,建立了它和半循环可分组设计(SCGDD)的联系. 应用这些构造以及Skolem型序列及其相关设计理论得到了某些参数的完美 AM-OPPW 2-D VWOOC码类;.4. 将二维循环码推广到二维Skew循环码,研究了二维Skew循环码的结构及其性质,建立了二维Skew循环码和其它已知码的关系; .5. 利用有限几何研究了循环Frame的构造,建立了两类新的循环Frame类。应用其得到了一些由单个跳频序列组成最优跳频序列类和最优差系统或同步性的无逗点码;.6. 将 Whiteman和 Ding-Helleseth的广义分园类推广到阶为d的广义分园类,推导出一些分园数的性质和计算公式。应用其完全解决了在Zp1p2上4阶Whiteman广义分园类猜想. 同时构造了一些渐进最优差系统或无逗点码;.7. 研究了单群 2F4(q) , 建立了单群 2F4(q) 确定的条件。研究了某些 3-设计,利用二维线性群作用在射影线上的轨道,获得了一些新的3-设计.
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Groups PSL(n, q) and 3-(v, k, 1) designs
PSL(n, q) 组和 3-(v, k, 1) 设计
- DOI:--
- 发表时间:2013
- 期刊:Ars Combinatoria
- 影响因子:--
- 作者:Tang, Jianxiong;Wei Jun LIU;Wang, Jinhua
- 通讯作者:Wang, Jinhua
Two classes of cyclic frames from finite geometries
有限几何中的两类循环框架
- DOI:--
- 发表时间:2013
- 期刊:Ars Combinatoria
- 影响因子:--
- 作者:Wang, Su;Wang, Jinhua
- 通讯作者:Wang, Jinhua
Doubly Resolvable Nearly Kirkman Triple Systems
双可解近柯克曼三重系统
- DOI:10.1002/jcd.21342
- 发表时间:2013-08
- 期刊:Journal of Combinatorial Designs
- 影响因子:0.7
- 作者:Abel, R. Julian R.;Chan, Nigel;Colbourn, Charles J.;Lamken, E. R.;Wang, Chengmin;Wang, Jinhua
- 通讯作者:Wang, Jinhua
2-D skew-cycliccodes over Fq[x,y;,]
Fq[x,y; 上的二维倾斜循环码;
- DOI:--
- 发表时间:2014
- 期刊:FiniteFieldsandTheirApplications
- 影响因子:--
- 作者:李秀丽;LiHongyan
- 通讯作者:LiHongyan
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--"}}
- 发表时间:{{ item.publish_year || "--" }}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--"}}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ patent.updateTime }}
其他文献
适用于复杂地形海域的溢油模拟系统
- DOI:--
- 发表时间:--
- 期刊:中国科学:技术科学
- 影响因子:--
- 作者:王金华;沈永明
- 通讯作者:沈永明
DL1106与doxorubicin和paclitaxel协同作用及其机制研究
- DOI:--
- 发表时间:2016
- 期刊:中国药理学与毒理学杂志
- 影响因子:--
- 作者:王金华;杜冠华
- 通讯作者:杜冠华
肿瘤免疫和代谢药物靶点研究进展
- DOI:--
- 发表时间:2019
- 期刊:药学学报
- 影响因子:--
- 作者:刘金宜;任利文;李莎;唐琴;李婉;郑湘锦;王金华;杜冠华
- 通讯作者:杜冠华
连云港港水质现状评价及主要污染物分析
- DOI:--
- 发表时间:2015
- 期刊:水道港口
- 影响因子:--
- 作者:王金华;章卫胜;高正荣
- 通讯作者:高正荣
双重准可分解4-圈系
- DOI:--
- 发表时间:2015
- 期刊:南通大学学报(自然科学版)
- 影响因子:--
- 作者:谢磊;杜娟;于志华;王金华
- 通讯作者:王金华
其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--" }}
- 发表时间:{{ item.publish_year || "--"}}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--" }}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
内容获取失败,请点击重试
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:
AI项目摘要
AI项目思路
AI技术路线图
请为本次AI项目解读的内容对您的实用性打分
非常不实用
非常实用
1
2
3
4
5
6
7
8
9
10
您认为此功能如何分析更能满足您的需求,请填写您的反馈:
王金华的其他基金
广义柯克曼方和t-设计的构造及其应用研究
- 批准号:11371207
- 批准年份:2013
- 资助金额:56.0 万元
- 项目类别:面上项目
编码密码学中若干组合对象研究
- 批准号:10971252
- 批准年份:2009
- 资助金额:23.0 万元
- 项目类别:面上项目
相似国自然基金
{{ item.name }}
- 批准号:{{ item.ratify_no }}
- 批准年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}
相似海外基金
{{
item.name }}
{{ item.translate_name }}
- 批准号:{{ item.ratify_no }}
- 财政年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}