Direct Electron Detection Camera for Next-Generation Sensitivity in Ultrafast Electron Scattering Measurements
直接电子探测相机可提高超快电子散射测量中的下一代灵敏度
基本信息
- 批准号:RTI-2023-00449
- 负责人:
- 金额:$ 10.78万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Research Tools and Instruments
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is currently an enormous, worldwide effort directed at the development and application of new experimental methods that make it possible to directly `watch' the time evolving structure of matter. These approaches combine state-of-the-art femtosecond lasers (see Nobel Prize in Physics, 2018) and sources of either ultrashort xray or electron pulses to acquire time-resolved diffraction/scattering patterns and images. If time-resolution approaches ~10 femtoseconds, the timescale of the highest frequency vibrations in molecules and materials, atomic motion is essentially frozen during an observation and one can completely follow the fundamental dynamics to produce a "molecular movie"; the experimental equivalent of a molecular dynamics simulation. It is possible to watch chemical bonds break/form and directly determine transition-state structures for even complex reactions, to follow phase transition dynamics uncovering the deep connections between the structure and properties of materials, and directly observe the coupling between charge, orbital and lattice degrees of freedom in both momentum and time. This proposal is focused specifically on the further development of the World's most powerful ultrafast electron scattering instrument, designed, built and operating at McGill University. We are requesting a state-of-the-art direct electron detection camera to replace our existing obsolete detector, enhancing our detection sensitivity by at least an order of magnitude. This new capability will open up a significant new 'scientific space' of phenomena that are undetectable with our current camera, shedding new light on materials phenomena as diverse as superconductivity, charge density waves, thermoelectricity, photovoltaicity and carrier mobility in semiconductors and metals. We will be in a position to investigate the complex interplay between strong, multiorbital electronic correlations, structural distortions, charge and orbital order across a range of strongly correlated material where this physics determines properties (transition metal oxides, pyrochlore oxides, manganites and cuprates), including the formation dynamics of quasiparticles in these systems that involve phonons. In monolayer and bilayer materials we will be able to direct watch exciton-phonon and exciton-polaron coupling, and chiral phonon generation. Further, there is also the possibility of discovering new photoinduced phases and avenues for optical control of complex materials, a topic at the forefront of materials research.
目前,全球范围内正在努力开发和应用新的实验方法,使直接“观察”物质的时间演变结构成为可能。这些方法结合了最先进的飞秒激光器(参见诺贝尔奖)。物理,2018)和超短 X 射线或电子脉冲源来获取时间分辨衍射/散射图案和图像如果时间分辨率接近约 10 飞秒,则为最高的时间尺度。分子和材料中的频率振动,原子运动在观察过程中基本上被冻结,并且可以完全遵循基本动力学来产生分子动力学模拟的实验等效物,可以观察化学键的断裂/形成。并直接确定复杂反应的过渡态结构,跟踪相变动力学,揭示材料结构和性质之间的深层联系,并直接观察电荷、轨道和晶格自由度在动量和时间方面的耦合。特别注重进一步发展世界上最强大的超快电子散射仪器,由麦吉尔大学设计、建造和运行,我们需要一台最先进的直接电子探测相机来取代我们现有的过时探测器,将我们的探测灵敏度至少提高一个数量级。这项新功能将为我们当前的相机无法探测到的现象开辟一个重要的新“科学空间”,为超导、电荷密度波、热电、光伏和载流子迁移率等多种材料现象提供新的线索。我们将能够研究一系列强相关材料(过渡金属氧化物、烧绿石氧化物、锰酸盐和铜酸盐),包括这些涉及声子的系统中的准粒子的形成动力学,在单层和双层材料中,我们将能够直接观察激子-声子。此外,还有可能发现新的光致相和复杂材料光学控制的途径,这是材料研究的前沿课题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siwick, Bradley其他文献
Siwick, Bradley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siwick, Bradley', 18)}}的其他基金
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2022
- 资助金额:
$ 10.78万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2022
- 资助金额:
$ 10.78万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2021
- 资助金额:
$ 10.78万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2021
- 资助金额:
$ 10.78万 - 项目类别:
Discovery Grants Program - Individual
Multi-Mode RF Electron Pulse Compression for Ultrafast Electron Scattering
用于超快电子散射的多模式射频电子脉冲压缩
- 批准号:
RTI-2021-00355 - 财政年份:2020
- 资助金额:
$ 10.78万 - 项目类别:
Research Tools and Instruments
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2020
- 资助金额:
$ 10.78万 - 项目类别:
Discovery Grants Program - Individual
Multi-Mode RF Electron Pulse Compression for Ultrafast Electron Scattering
用于超快电子散射的多模式射频电子脉冲压缩
- 批准号:
RTI-2021-00355 - 财政年份:2020
- 资助金额:
$ 10.78万 - 项目类别:
Research Tools and Instruments
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2020
- 资助金额:
$ 10.78万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2019
- 资助金额:
$ 10.78万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2019
- 资助金额:
$ 10.78万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
电力电子变换器功率模块老化失效的非侵入式检测理论与方法研究
- 批准号:52377193
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于光生电子储存机制的改性氮化碳化学发光检测胃癌肿瘤标志物的新方法研究
- 批准号:82302653
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于光生电子储存机制的改性氮化碳化学发光检测胃癌肿瘤标志物的新方法研究
- 批准号:82302653
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
集成微流控技术的生物膜内电子传递载体高灵敏、快速检测方法及其机理研究
- 批准号:42376208
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Fast 4D-STEM direct electron detection system
快速4D-STEM直接电子检测系统
- 批准号:
536748771 - 财政年份:2024
- 资助金额:
$ 10.78万 - 项目类别:
Major Research Instrumentation
MRI: Acquisition of a Direct Detection Electron Camera for an Existing Scanning Transmission Electron Microscope for Low-Dose and Phase-Sensitive Imaging of Materials
MRI:为现有扫描透射电子显微镜购买直接检测电子相机,用于材料的低剂量和相敏成像
- 批准号:
2216710 - 财政年份:2022
- 资助金额:
$ 10.78万 - 项目类别:
Standard Grant
An energy discriminating direct detector for multi-color SEM
用于多色 SEM 的能量辨别直接探测器
- 批准号:
10474559 - 财政年份:2021
- 资助金额:
$ 10.78万 - 项目类别:
A Rapid and Sensitive Technology for Direct Sensing of Intact SARS-CoV-2 Virions Using Designer DNA Nanostructure Probes and a Smartphone Fluorimeter
使用设计 DNA 纳米结构探针和智能手机荧光计直接感测完整 SARS-CoV-2 病毒粒子的快速灵敏技术
- 批准号:
10196257 - 财政年份:2021
- 资助金额:
$ 10.78万 - 项目类别:
MRI: Acquisition of a Direct Detection Electron Energy Loss Spectrometer for Fast, Low-Dose, and High Resolution Spectroscopic Imaging of Hard and Soft Materials
MRI:购买直接检测电子能量损失光谱仪,对硬质和软质材料进行快速、低剂量和高分辨率光谱成像
- 批准号:
2117903 - 财政年份:2021
- 资助金额:
$ 10.78万 - 项目类别:
Standard Grant