Detecting X-band diamond phononic resonators in the quantum regime

检测量子态中的 X 波段金刚石声子谐振器

基本信息

  • 批准号:
    RTI-2023-00101
  • 负责人:
  • 金额:
    $ 9.56万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Research Tools and Instruments
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Technologies whose properties are dependent on the quantum behaviour of our physical world are enabling new capabilities in communication, computing, and sensing. For example, single particles of light can link memories that encode information within the quantum states electrons-for example in their spin state-allowing ultra-secure sharing of information. A dream of quantum technology researchers is to connect large numbers of electron spins, which would open doors in many areas of quantum information processing. This ambitious goal is being held back by challenges in creating devices on chip that can link nanoscale spin-systems. The equipment described in this request is urgently required to advance a promising and rapidly emerging area of spin-based quantum technology: spin-optomechanics. This platform uses vibrations-phonons-to connect electron and nuclear spins whose quantum states are used to store and process information. The Barclay lab is a world leader in creating devices from diamond chips that underlie this technology. Lab HQP recently demonstrated optical control of high frequency mechanical vibrations that can modify the quantum state of electron spins of defects in the diamond crystal. This first ever demonstration was a major milestone. However moving to the next step-operating at a quantum level where single phonons can couple to single spins-has been limited by challenges in device performance and experimental capabilities. Operating these devices in such a quantum regime is a critical requirement for utilizing them in quantum information processing applications. During the past six months, HQP dramatically improved the performance of the lab's devices, and are now preparing to operate these best-in-class diamond "optomechanical crystals" at the quantum level for the first time. However, lacking a key piece equipment needed for optical detection of single phonons, they are unable to do so. This request for Research Tools and Instruments addresses this gap. Demonstrating this proposed experiment will establish Canada as the world leader in quantum spin-optomechanical systems. This project is being conducted in close competition with several formidable international research groups. Any delay in acquiring the equipment will cause the Barclay lab's current advantage to be lost and allow other researchers (e.g. at UCSB and Harvard) to catch up. This will severely diminish the impact of the work and negatively affect HQP outcomes. This equipment will be immediately used by approximately 10 HQP, with another 10 projected to benefit from it over the next five years, all of whom work in an inclusive and supportive environment that strives to reduce existing inequities in physics research.
属性取决于我们物理世界的量子行为的技术正在为通信,计算和感知提供新的能力。例如,光的单个粒子可以连接记忆,这些记忆在量子状态示例中编码信息的旋转状态赋予信息的超安全性共享。量子技术研究人员的梦想是连接大量电子旋转,这将在许多量子信息处理的领域打开门。这个雄心勃勃的目标被挑战在芯片上创建可以连接纳米级旋转系统的挑战所阻碍。迫切需要在此请求中描述的设备,以推进基于自旋的量子技术的有前途且快速新兴的领域:自旋 - optomechanics。该平台使用振动 - 指向电子和核自旋连接其量子状态用于存储和处理信息的核自旋。巴克莱实验室(Barclay Lab)是从钻石芯片创建设备的世界领导者,这些钻石芯片是这项技术的基础。实验室HQP最近证明了高频机械振动的光学控制,这些振动可以改变钻石晶体中缺陷的电子旋转的量子状态。有史以来第一次示威是一个主要的里程碑。然而,在量子水平上移至下一步操作,在该量子水平上,单个声子可以将单次旋转与单旋旋相结合受到设备性能和实验能力的挑战的限制。在这样的量子制度中操作这些设备是将其用于量子信息处理应用程序中的关键要求。在过去的六个月中,HQP大大提高了实验室设备的性能,现在正准备在量子水平上运行这些最佳的钻石“光力机械晶体”。但是,缺少单个声子的光学检测所需的关键件设备,因此无法做到。该研究工具和工具的要求解决了这一差距。证明这项提出的实验将确立加拿大的量子自旋型机械系统的世界领导者。该项目正在与几个强大的国际研究小组进行密切竞争。获取设备的任何延迟都将导致巴克莱实验室目前的优势丢失,并允许其他研究人员(例如在UCSB和Harvard)赶上。这将严重减少工作的影响,并对HQP结果产生负面影响。该设备将立即被大约10个HQP使用,预计另外10个将在未来五年中受益,所有这些设备都在包容性和支持性的环境中工作,旨在减少物理研究中的现有不平等。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Barclay, Paul其他文献

The Impact of a Custom Electromyograph (EMG) Controller on Player Enjoyment of Games Designed to Teach the Use of Prosthetic Arms
  • DOI:
    10.1007/s40869-018-0060-0
  • 发表时间:
    2018-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Smith, Peter A.;Dombrowski, Matt;Barclay, Paul
  • 通讯作者:
    Barclay, Paul

Barclay, Paul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Barclay, Paul', 18)}}的其他基金

Quantum spin-optomechanics
量子自旋光力学
  • 批准号:
    RGPIN-2022-03551
  • 财政年份:
    2022
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid quantum nanophotonics and optomechanics
混合量子纳米光子学和光力学
  • 批准号:
    RGPIN-2016-04535
  • 财政年份:
    2021
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum phononic-photonic-spin networking devices
量子声子-光子-自旋网络设备
  • 批准号:
    521536-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Strategic Projects - Group
Demonstrating coherent optomechanical control of spin quantum memory
展示自旋量子存储器的相干光机械控制
  • 批准号:
    RTI-2021-00659
  • 财政年份:
    2020
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Research Tools and Instruments
Hybrid quantum nanophotonics and optomechanics
混合量子纳米光子学和光力学
  • 批准号:
    RGPIN-2016-04535
  • 财政年份:
    2020
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid quantum nanophotonics and optomechanics
混合量子纳米光子学和光力学
  • 批准号:
    RGPIN-2016-04535
  • 财政年份:
    2019
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum phononic-photonic-spin networking devices
量子声子-光子-自旋网络设备
  • 批准号:
    521536-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Strategic Projects - Group
Spin Canada 2018 Workshop
Spin Canada 2018 研讨会
  • 批准号:
    530563-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Connect Grants Level 2
Hybrid quantum nanophotonics and optomechanics
混合量子纳米光子学和光力学
  • 批准号:
    RGPIN-2016-04535
  • 财政年份:
    2018
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum nano-optomechanical devices
量子纳米光机械器件
  • 批准号:
    493807-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Strategic Projects - Group

相似国自然基金

人参结合Band-3蛋白胞质结构域调控蛋白复合物装配调节红细胞形态和功能的分子机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
CD47和Band3介导的衰老红细胞吞噬机制的单分子定位成像研究
  • 批准号:
    81501432
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
miR-150调控红细胞膜蛋白生成对红系终末分化的作用和机制研究
  • 批准号:
    81270576
  • 批准年份:
    2012
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目
超高频超宽带系统射频基带补偿理论与技术的研究
  • 批准号:
    61001097
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Band3蛋白关联的一种新活性蛋白酶的纯化、基因克隆及其特性研究
  • 批准号:
    39970291
  • 批准年份:
    1999
  • 资助金额:
    11.0 万元
  • 项目类别:
    面上项目

相似海外基金

Study of terminal structure and electronic band structure of diamond surface by angle-resolved photoelectron spectroscopy
角分辨光电子能谱研究金刚石表面末端结构和电子能带结构
  • 批准号:
    15K04681
  • 财政年份:
    2015
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
GOALI: Lateral-Mode MEMS Filter Arrays on Ultrananocrystalline Diamond for Multi-Band Communication
GOALI:用于多频段通信的超纳米晶金刚石横向模式 MEMS 滤波器阵列
  • 批准号:
    1440163
  • 财政年份:
    2014
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Standard Grant
Brazed Diamond Band Saw Development (Revised)
钎焊金刚石带锯开发(修订版)
  • 批准号:
    720151
  • 财政年份:
    2013
  • 资助金额:
    $ 9.56万
  • 项目类别:
    GRD Development of Prototype
GOALI: Lateral-Mode MEMS Filter Arrays on Ultrananocrystalline Diamond for Multi-Band Communication
GOALI:用于多频段通信的超纳米晶金刚石横向模式 MEMS 滤波器阵列
  • 批准号:
    1202523
  • 财政年份:
    2012
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Standard Grant
Electronic structure of superconductive diamond and related materials : Band insulator-metal transition and superconductivity
超导金刚石及相关材料的电子结构:能带绝缘体-金属转变和超导
  • 批准号:
    20340091
  • 财政年份:
    2008
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了