Data-driven decision models for Industry 4.0 supply chain management

工业 4.0 供应链管理的数据驱动决策模型

基本信息

  • 批准号:
    RGPIN-2022-04672
  • 负责人:
  • 金额:
    $ 2.26万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Industry 4.0 (I4.0) revolves around an industrial production that is highly flexible in production volume and customization. It relies on the power of digitalization, internet of things (IoT) and artificial intelligence. Confronted with the dynamic business ecosystem of I4.0 in addition to the unprecedent challenges of recent pandemic, the majority of manufacturing enterprises strive to redesign their supply chains (SCs) towards resilience and responsiveness in meeting the needs of their clients. They also aim for improving the agility and flexible decision capabilities to meet the challenges of a highly-customized manufacturing era. A high level of customization, on the other hand, calls for a flexible and hyper-connected supply network where the entities agree on sharing technological and manufacturing resources to achieve the collective goal of improving agility and reducing costs. Consequently, the integration among SC stakeholders, enabled by IoT technologies, must be leveraged towards sharing real-time information in terms of manufacturing operations. In addition, the explosion in the availability and accessibility of data along with breakthrough advances in machine learning (ML) approaches must be adequately exploited to promote real-time decision-making in modern SCs. Given the paucity of fundamental research on quantitative I4.0 SC management tools, the overall goal of this research program is to propose data-driven and robust decision support tools for strategic, tactical and operational planning in smart SCs. With a particular focus on a cloud manufacturing environment, this goal can be cascaded into the following objectives: i) to develop decision models and solution algorithms for the design of a resilient and configurable SC by incorporating the uncertainty inherent in the manufacturing of highly customized products; ii) to propose resource and cost sharing mechanisms to promote horizontal collaboration in I4.0 SCs; iii) to propose a robust I4.0 SC tactical planning framework, adaptive to the dynamic manufacturing context of mass customization; iv) to propose a robust and data-driven assembly line balancing model that facilitates the frequent reconfiguration of the manufacturing line in the context of highly-customized manufacturing; and v) to develop data-driven decision models and solution algorithms for intelligent and adaptive operational-level planning in I4.0 SCs. The methodology adopted in this proposal is a combination of data analytics methods, such as ML, and classical Operations Research/Management Science approaches, such as stochastic and robust optimization, decomposition algorithms, metaheuristics, and SC collaborative games. Relying on prescriptive analytics and smart decision support tools, this proposal will harness comprehensively the new Industry 4.0 digital transformation paradigm to unlock new opportunities for renovating Canadian manufacturing SC that has been long suffering from low productivity.
行业4.0(I4.0)围绕着生产量和定制非常灵活的工业生产。它依赖数字化,物联网(IoT)和人工智能的力量。面对I4.0的动态业务生态系统,除了最近大流行的前所未有的挑战之外,大多数制造业企业都致力于重新设计其供应链(SCS),以满足客户的需求,以应对弹性和响应能力。它们还旨在提高敏捷性和灵活的决策能力,以应对高度定制的制造时代的挑战。另一方面,高水平的自定义要求建立灵活且超连接的供应网络,该实体同意共享技术和制造资源,以实现提高敏捷性和降低成本的集体目标。因此,由物联网技术启用的SC利益相关者之间的集成必须利用以制造运营来共享实时信息。此外,必须充分利用数据的可用性和可访问性以及机器学习方法(ML)方法的突破性进步,以促进现代SC中的实时决策。鉴于对定量I4.0 SC管理工具的基本研究很少,因此该研究计划的总体目标是为SMART SC中的战略,战术和运营计划提供数据驱动和强大的决策支持工具。特别关注云制造环境,可以将该目标层叠成以下目标:i)通过结合高度定制产品的制造中固有的不确定性来开发设计模型和解决方案算法,以设计弹性和可配置的SC。 ; ii)提出资源和成本共享机制,以促进I4.0 SC的水平合作; iii)提出一个强大的I4.0 SC战术计划框架,适应大规模定制的动态制造环境; iv)提出了一个强大的数据驱动组装线平衡模型,以促进在高度定制的制造业中频繁地重新配置制造线; v)为I4.0 SC中的智能和适应性操作级别的计划开发数据驱动的决策模型和解决方案算法。本提案中采用的方法是数据分析方法(例如ML)以及经典运营研究/管理科学方法的组合,例如随机和健壮的优化,分解算法,元启发式学和SC协作游戏。该提案依靠规范性分析和智能决策支持工具,将全面利用新的行业4.0数字转型范式,以解锁对加拿大制造业SC的新机会,而加拿大制造业SC长期以来一直遭受生产力低。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KazemiZanjani, Masoumeh其他文献

KazemiZanjani, Masoumeh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KazemiZanjani, Masoumeh', 18)}}的其他基金

Analytical tools for robust strategic and tactical planning in maintenance logistics networks
用于维护物流网络中稳健的战略和战术规划的分析工具
  • 批准号:
    RGPIN-2017-04803
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Analytical tools for robust strategic and tactical planning in maintenance logistics networks
用于维护物流网络中稳健的战略和战术规划的分析工具
  • 批准号:
    RGPIN-2017-04803
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Analytical tools for robust strategic and tactical planning in maintenance logistics networks
用于维护物流网络中稳健的战略和战术规划的分析工具
  • 批准号:
    RGPIN-2017-04803
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Analytical tools for robust strategic and tactical planning in maintenance logistics networks
用于维护物流网络中稳健的战略和战术规划的分析工具
  • 批准号:
    RGPIN-2017-04803
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Robust multi-objective job-shop scheduling for make-to-order manufacturing
用于按单生产的稳健多目标车间调度
  • 批准号:
    521778-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Engage Grants Program
Analytical tools for robust strategic and tactical planning in maintenance logistics networks
用于维护物流网络中稳健的战略和战术规划的分析工具
  • 批准号:
    RGPIN-2017-04803
  • 财政年份:
    2017
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated tactical planning under uncertainty in the supply chain of divergent-type production systems
分散型生产系统供应链不确定性下的综合战术规划
  • 批准号:
    402043-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated tactical planning under uncertainty in the supply chain of divergent-type production systems
分散型生产系统供应链不确定性下的综合战术规划
  • 批准号:
    402043-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated tactical planning under uncertainty in the supply chain of divergent-type production systems
分散型生产系统供应链不确定性下的综合战术规划
  • 批准号:
    402043-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated tactical planning under uncertainty in the supply chain of divergent-type production systems
分散型生产系统供应链不确定性下的综合战术规划
  • 批准号:
    402043-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

中国外来入侵植物优先管理框架研究:分布格局、驱动因素与潜在分布区的综合分析
  • 批准号:
    32372565
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
光驱动自由基酶的催化机理研究和理性设计
  • 批准号:
    22337006
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
因果推断驱动的间歇过程稳定软测量方法研究
  • 批准号:
    62373036
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
数字孪生驱动的车联网脆弱性动态量化评估研究
  • 批准号:
    62362053
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
代理模型融合与迁移的分布式数据驱动进化计算方法
  • 批准号:
    62376097
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Enabling net zero retrofit: using AI to generate new data driven insights and support better decision making
实现净零改造:使用人工智能生成新的数据驱动的见解并支持更好的决策
  • 批准号:
    10114530
  • 财政年份:
    2024
  • 资助金额:
    $ 2.26万
  • 项目类别:
    SME Support
Developing Novel Technology for Data Driven Clinical Decision Making
开发数据驱动临床决策的新技术
  • 批准号:
    MR/Y007816/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Research Grant
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
  • 批准号:
    10575550
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
The role of stress, social support, and brain function on alcohol misuse in women
压力、社会支持和大脑功能对女性酗酒的影响
  • 批准号:
    10676428
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
Data-driven and science-informed methods for the discovery of biomedical mechanisms and processes
用于发现生物医学机制和过程的数据驱动和科学信息方法
  • 批准号:
    10624014
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了