Conformal field theory and the nature of symmetry

共形场论和对称性的本质

基本信息

  • 批准号:
    RGPIN-2019-06049
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

String theory is our best hope for a `theory of everything' in physics. How relevant string theory will be to the physics of tomorrow is still uncertain, but its impact on mathematics is clear, and probably unparalleled in history. I study the mathematics inspired by string theory. Instead of string theory itself, I work with a more or less equivalent theory called conformal field theory, because it's much more accessible mathematically. It is an especially friendly example of a quantum field theory, the main language of modern physics. According to Fields' medalist Witten, this is the century when mathematics finally comes to terms with quantum field theory. It is expected that this will be at least as significant for mathematics, as was the coming to terms with calculus in the 18th and 19th centuries. I am exploring the extent to which some of our classical notions, like symmetry, are being disrupted as we understand conformal field theory better. I want to know how significant is this disruption. Though we are being confronted by these new ideas and examples, classical notions still permeate today's theory. Is this a hint that the classical notions are truly foundational and will continue to be relevant, or will we eventually see this as a reactionary bias, an embarrassing prejudice? I will map out some of the range of possibilities allowed in conformal field theory, and judge for myself the role the classical notions appear to deserve. What I am finding is that the coming changes will be profound. Canadian mathematicians have already featured prominently in aspects of this evolving theory. For example, John McKay discovered a bridge (called Moonshine) between two seemingly unrelated areas: certain classical symmetries, and `modular functions' (i.e. functions which live on surfaces). Our best understanding of Moonshine interpolates them using conformal field theory. Robert Moody co-discovered what are now called Kac-Moody algebras; perhaps their most important realization is as symmetries of certain very special (and very classical) conformal field theories. I am very interested in both of these aspects. The thought that I am continuing their legacy inspires me.
弦理论是我们对物理学中“万有理论”的最大希望。弦理论与未来物理学的相关性仍不确定,但它对数学的影响是显而易见的,而且可能是历史上无与伦比的。我研究受弦理论启发的数学。我使用的不是弦理论本身,而是一种或多或少等效的理论,称为共形场论,因为它在数学上更容易理解。这是现代物理学的主要语言——量子场论的一个特别友好的例子。根据菲尔兹奖获得者维滕的说法,这是数学最终接受量子场论的世纪。预计这对于数学来说至少会像 18 世纪和 19 世纪微积分的出现一样重要。我正在探索随着我们更好地理解共形场论,我们的一些经典概念(例如对称性)在多大程度上被破坏。我想知道这种破坏有多重要。尽管我们面临着这些新的想法和例子,经典的观念仍然渗透到今天的理论中。这是否暗示经典概念确实是基础性的并将继续具有相关性,或者我们最终会将此视为一种反动偏见、一种令人尴尬的偏见?我将列出共形场论中允许的一些可能性范围,并亲自判断经典概念似乎应有的作用。我发现即将发生的变化将是深远的。加拿大数学家已经在这一不断发展的理论的各个方面发挥了突出作用。例如,约翰·麦凯在两个看似无关的领域之间发现了一座桥梁(称为月光):某些经典对称性和“模函数”(即存在于表面上的函数)。我们对 Moonshine 的最佳理解是使用共形场理论对它们进行插值。罗伯特·穆迪 (Robert Moody) 与他人共同发现了现在所谓的 Kac-Moody 代数;也许他们最重要的实现是某些非常特殊(并且非常经典)的共形场论的对称性。我对这两方面都非常感兴趣。我继承他们的遗产的想法激励着我。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gannon, Terry其他文献

Gannon, Terry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gannon, Terry', 18)}}的其他基金

Conformal field theory and the nature of symmetry
共形场论和对称性的本质
  • 批准号:
    RGPIN-2019-06049
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Conformal field theory and the nature of symmetry
共形场论和对称性的本质
  • 批准号:
    RGPIN-2019-06049
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Conformal field theory and the nature of symmetry
共形场论和对称性的本质
  • 批准号:
    RGPIN-2019-06049
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Conformal field theory and the nature of symmetry
共形场论和对称性的本质
  • 批准号:
    RGPIN-2019-06049
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Conformal field theory and the nature of symmetry
共形场论和对称性的本质
  • 批准号:
    RGPIN-2019-06049
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Conformal field theory and the nature of symmetry
共形场论和对称性的本质
  • 批准号:
    RGPIN-2019-06049
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于MRE支座的软土场地结构智能隔震理论与方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
非平衡活性物质系统的势流场地貌理论
  • 批准号:
    11905222
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
跨断层近场地震下高速铁路桥梁结构安全理论研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    231 万元
  • 项目类别:
    联合基金项目
河谷场地地震波传播理论及散射规律研究
  • 批准号:
    51479050
  • 批准年份:
    2014
  • 资助金额:
    84.0 万元
  • 项目类别:
    面上项目
斜拉桥近场地震“活断层-土-结构”一体化分析理论与试验研究
  • 批准号:
    51378110
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Research Grant
NSF-BSF: New Approaches to Conformal Field Theory - Codes, Ensembles, and Complexity
NSF-BSF:共形场论的新方法 - 代码、系综和复杂性
  • 批准号:
    2310426
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
The mathematics of conformal field theory: a unified approach
共形场论的数学:统一方法
  • 批准号:
    RGPIN-2022-04104
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
The mathematics of conformal field theory: a unified approach
共形场论的数学:统一方法
  • 批准号:
    RGPIN-2022-04104
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Turning up the Temperature in Conformal Field Theory
提高共形场论中的温度
  • 批准号:
    567953-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了