Several aspects of L-functions

L-函数的几个方面

基本信息

  • 批准号:
    RGPIN-2022-03651
  • 负责人:
  • 金额:
    $ 2.26万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

L--functions play a central role in number theory as many of the deepest questions in the area revolve around them. They encode properties of arithmetic objects, such as the prime numbers. Euclid proved that there are infinitely many prime numbers 2300 years ago, and Gauss conjectured an asymptotic formula for the number of primes 200 years ago. This asymptotic formula was eventually proven by Hadamard and de la Vallée Poussin in 1896 and became known as the Prime Number Theorem. However, obtaining a formula as precise as Gauss conjectured is still an open problem, as it depends on the Riemann Hypothesis (RH), one of the seven Millennium Problems from the Clay Mathematics Institute with a prize of one million dollars. RH is a statement about the zeroes of Riemann zeta function, which is the simplest possible L-function. Many directions arise when considering more general L-functions. The most fundamental questions in this topic are concerned with how large L-functions can be, with the location of their zeroes, and with the values they take at particular numbers (special values). The answers or expected answers to such questions have deep arithmetic significance, such as the Birch and Swinnerton--Dyer conjecture (another Millennium Problem!) and its generalizations. The two far--reaching goals of our research program are concerned with the study of special values of L--functions, and the study of statistics associated to L-functions, particularly of their non-vanishing at certain points. The first direction concerning special values of L--functions has been driven by our focus on Mahler measure of multivariable polynomials. The (logarithmic) Mahler measure of a non-zero polynomial is defined as certain complex integral, and has been found to yield special values of functions of number theoretic significance such as L-functions. One expects that understanding these formulas will yield more information about the nature of the special values. We have been working in the discovery, proof, and understanding of such formulas with the goal of gaining knowledge towards deep conjectures of Beilinson and Bloch on special values of L-functions. We are also studying the dynamical Mahler measure, associated to discrete dynamical systems. The other main direction for our research program revolves around statistics of L-functions. By the work of Montgomery, and then Katz and Sarnak, it is natural to study families of L--functions (sets of L--functions that share a common arithmetic structure) with the expectation that the behavior of the family will provide information about its individual members. We have been focusing on various aspects of the arithmetic statistics of L--functions, in particular for cubic L-functions. The theory is well understood for quadratic L-functions, but much less in known for the cubic case, as it is much more difficult. We have been working on the distribution of values in such families, and in particular non-vanishing results.
Lunctions围绕着该地区的许多最深层的问题,例如欧几里金的素数渐近公式在1896年被哈玛德(Hadamard)和瓦莱·普斯辛(ValléePoussin)证明,并被称为质数定理,获得了像猜想一样精确的公式,因为这取决于RIEMANN假设(RH)一百万美元价值观)关于L-功能的特殊值的方向是我们对多变量多元素的Mahler的重点。将向特殊价值观的性质介绍。 l功能。 - 函数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lalin, Matilde其他文献

Counting Salem Numbers of Arithmetic Hyperbolic 3-Orbifolds.
  • DOI:
    10.1007/s00574-021-00270-9
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Belolipetsky, Mikhail;Lalin, Matilde;Murillo, Plinio G. P.;Thompson, Lola
  • 通讯作者:
    Thompson, Lola
On the vanishing of twisted L-functions of elliptic curves over rational function fields
关于有理函数域上椭圆曲线扭曲L函数的消失
  • DOI:
    10.1007/s40993-022-00379-w
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Comeau-Lapointe, Antoine;David, Chantal;Lalin, Matilde;Li, Wanlin
  • 通讯作者:
    Li, Wanlin

Lalin, Matilde的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lalin, Matilde', 18)}}的其他基金

Mahler measure and curves over finite fields
有限域上的马勒测量和曲线
  • 批准号:
    355412-2013
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Mahler measure and curves over finite fields
有限域上的马勒测量和曲线
  • 批准号:
    355412-2013
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Mahler measure and curves over finite fields
有限域上的马勒测量和曲线
  • 批准号:
    355412-2013
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Mahler measure and curves over finite fields
有限域上的马勒测量和曲线
  • 批准号:
    355412-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Mahler measure and curves over finite fields
有限域上的马勒测量和曲线
  • 批准号:
    355412-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Mahler measure and curves over finite fields
有限域上的马勒测量和曲线
  • 批准号:
    355412-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Mahler measure and curves over finite fields
有限域上的马勒测量和曲线
  • 批准号:
    355412-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Mahler measure and curves over finite fields
有限域上的马勒测量和曲线
  • 批准号:
    355412-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Mahler measure and curves over finite fields
有限域上的马勒测量和曲线
  • 批准号:
    355412-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Periods arising from Mahler measure, hyperbolic volumes, and related topics
由马勒测量、双曲体积和相关主题产生的周期
  • 批准号:
    355412-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

多功能POSS基纳米杂化材料分子结构设计及在革兰氏阴性菌诊疗方面的应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
双功能清除剂的设计及其在脑出血保护性能方面的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
新型金属有机框架(MOFs)材料及其在忆阻器应用方面的研究
  • 批准号:
    21901182
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
过渡金属掺杂碳量子点在多功能比率荧光传感器可控化设计方面的研究
  • 批准号:
    21804132
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
表面双功能化在提高半导体光催化剂双氧水合成活性和稳定性方面的应用及其调控机制
  • 批准号:
    51872091
  • 批准年份:
    2018
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Aspects and Functions of Legal Principles in Civil Law Interpretation
民法解释中法律原则的方面和作用
  • 批准号:
    23K01192
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric aspects of the free-fermion and the non-commutative Schur functions
自由费米子和非交换 Schur 函数的几何方面
  • 批准号:
    23K03056
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
L-Functions and Automorphic Forms: Algebraic and p-adic Aspects
L 函数和自守形式:代数和 p 进方面
  • 批准号:
    2302011
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Arithmetic Aspects of Special Values of L-Functions
L 函数特殊值的算术方面
  • 批准号:
    2303864
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Arithmetic Aspects of Special Values of L-Functions
L 函数特殊值的算术方面
  • 批准号:
    2001409
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了