Realization problems in Representation Theory and Algebraic Combinatorics

表示论和代数组合学中的实现问题

基本信息

  • 批准号:
    RGPIN-2017-05331
  • 负责人:
  • 金额:
    $ 1.17万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

I propose to study the representation theory of hypergroups. A hypergroup is a finite-dimensional associative algebra A with a distinguished basis B={b0, b1, , br-1} for which the multiplicative identity b0 = 1 lies in B, and B has the “pseudo-inverse” property: for every bi in B, there is a unique bi* in B for which the coefficient of b0 in bibi* is nonzero. So a hypergroup generalizes the familiar group concept with the group's inverse property replaced by the pseudo-inverse. My work will focus on how these structures can be represented as matrices over as small a field or ring as possible, dealing mainly with two types of hypergroup in addition to group algebras: adjacency algebras of association schemes, in which the nonidentity elements of the basis B can be identified with a collection of graphs, and integral table algebras, which are hypergroups in which the coefficient of every bk in a product of basis elements bibj is always a nonnegative integer. There is a hierarchy here: group algebras are adjacency algebras, and adjacency algebras are integral table algebras. Over the last 20 years, much of the representation theory of these kinds of hypergroups has been motivated by ideas from the representation theory of groups and algebras, and this has resulted in fruitful applications in areas such as graph theory, design theory, and coding theory. It has provided a framework for studies of modular data appearing in conformal field theory, and occasionally new ideas in group theory have been uncovered by those working out the algebraic properties of hypergroups. Representation theory of hypergroups is an emerging area of research in algebraic combinatorics internationally. Many of the new contributions are taking place in Asian nations, Europe, and the U.S., which makes it an area ripe with international collaborative and exchange opportunities for Canadians. There is a substantial computational algebra component to our approach, which mixes with skills and experience in ordinary and integral representation theory, group theory, ring theory, algebraic graph theory, and emerging ideas in algebraic combinatorics to produce a vibrant research and training environment. The main projects in this proposal are about finding descriptions of the smallest field of realization of irreducible representations of hypergroups, discovering techniques for constructing irreducible representations of hypergroups, describing the units of finite order that can be represented integrally in the basis of a noncommutative hypergroup, and determining the integral table algebras that can be realized as the adjacency algebra of an association scheme. Ongoing collaborative projects in the representation theory of groups concerning the Zassenhaus conjecture for integral group rings and on the multiplicity-free question for the Weil character of a unitary group of a finite local ring are also part of the proposal.
我提出研究超组的理论。尽可能多地与非零*一起使用,而熟悉的组概念被伪倒置代替了,我的工作将集中在矩阵上。 o除组代数外,超组的类型:关联方案的邻接代数,其中基于图的非身份元素在基础元素BIBJ的产物中的每个BK的积分表代数均始终是一个非校友通讯。代数代数和邻接代数代数是由代表群体和代数理论的想法激励的,这导致了在图理论和编码理论等领域中的富有成效的应用。在整个域中出现的模块化数据在亚洲国家,欧洲和美国进行了新的贡献,这使其成为加拿大人的国际协作和交换机会的成熟领域。代数学的整体理论,戒指理论和新兴思想在本提案中产生充满活力的研究和培训环境。命令可以基于非交换性超级组,并设计可以实现的积分表代数,该代数可作为关联方案的邻接。提案的一部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Herman, Allen其他文献

Adversities in childhood and adult psychopathology in the South Africa Stress and Health Study: associations with first-onset DSM-IV disorders.
  • DOI:
    10.1016/j.socscimed.2010.08.015
  • 发表时间:
    2010-11
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Slopen, Natalie;Williams, David R.;Seedat, Soraya;Moomal, Hashim;Herman, Allen;Stein, Dan J.
  • 通讯作者:
    Stein, Dan J.

Herman, Allen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Herman, Allen', 18)}}的其他基金

Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2020
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2018
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2017
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Representation theory of finite groups and association schemes
有限群表示论和关联格式
  • 批准号:
    194195-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Representation theory of finite groups and association schemes
有限群表示论和关联格式
  • 批准号:
    194195-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Representation theory of finite groups and association schemes
有限群表示论和关联格式
  • 批准号:
    194195-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Representation theory of finite groups and association schemes
有限群表示论和关联格式
  • 批准号:
    194195-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Representation theory of finite groups and association schemes
有限群表示论和关联格式
  • 批准号:
    194195-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

多正交基字典下的稀疏表示与恢复问题
  • 批准号:
    12371101
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
表示函数与渐近基相关问题的研究
  • 批准号:
    12301003
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于拉格朗日乘子表示的多项式变分不等式问题数值解法
  • 批准号:
    12301407
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向稀疏性问题的时空轨迹生成与表示学习方法研究
  • 批准号:
    62372031
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
典型李群表示的两个问题
  • 批准号:
    12371033
  • 批准年份:
    2023
  • 资助金额:
    42 万元
  • 项目类别:
    面上项目

相似海外基金

Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2020
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2018
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2017
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了