Mathematical inverse problems arising in acoustic imaging

声学成像中出现的数学反问题

基本信息

  • 批准号:
    RGPIN-2022-04547
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This research program concerns mathematical inverse problems motivated by a natural question from acoustics. To what extent can we "see" with sound? In other words, to what extent can physical properties of a medium be inferred by transmitting a sound pulse toward it and measuring the resulting echoes? Can we do more than create a rough picture (as is currently done with ultrasound medical scans, for example) and determine the actual values of physical parameters such as density of acoustic impedance? Recent mathematical research suggests that the latter, while not currently feasible, may in fact be possible. The propagation of acoustic waves is modelled by a special class of what are known as partial differential equations (PDE). The physical parameters that characterize a body or physical medium through which sound is propagating occur as specific terms in these PDE called coefficients. In medical imaging, for example, when one records acoustic echoes with an ultrasonic sensor, one is in effect recording part of the solution to a PDE, and one wants to determine the coefficients of the equation, which are unknown, from the recorded partial solution. This is known in mathematics as an inverse problem (as opposed to the classical forward problem of computing a solution to a given PDE). The theory of inverse problems is under rapid development, but we still do not understand many basic questions in the subject, and in particular, it is not currently understood how best to compute the coefficient of the PDE governing sound propagation from partial solutions to the equation---in other words, how to make the most accurate possible picture from recorded acoustic echoes! The overall goals of the proposed research program are to develop: (1) novel mathematical methods for solving inverse problems; (2) new computational techniques related to wave phenomena of interest to the broader scientific community, including physicists and engineers; (3) to translate mathematical insights into practical real-world imaging technologies. The research involves both pure mathematics, including the analysis of PDE and related fields, as well as computational methods, including the design, implementation and analysis of algorithms, and will involve a diverse team of talented graduate students, postdoctoral researchers and international collaborators. Achieving the program's objectives will not only yield new mathematics and improve our scientific understanding of wave phenomena, but it offers the possibility of an enhanced capacity for diagnostic imaging, and non-destructive testing of the buildings and structures we rely on.
该研究计划涉及由声学中的自然问题激发的数学反问题。我们在多大程度上可以用声音“看到”?换句话说,通过向其传输声脉冲并测量所得回声来推断介质的物理特性在多大程度上可以推断出来?我们可以做的不仅仅是创建粗糙的图片(例如,就像当前使用超声医学扫描一样),并确定物理参数的实际值,例如声学阻抗的密度?最近的数学研究表明,后者虽然目前不可行,但实际上可能是可能的。 声波的传播由特殊类别的部分微分方程(PDE)建模。表征声音传播的身体或物理介质的物理参数以这些PDE的特定术语发生,称为系数。例如,在医学成像中,当一个人记录具有超声传感器的声学回声时,实际上是将部分记录到PDE的溶液中,并且希望从记录的部分溶液中确定方程的系数,这是未知的。这在数学中被称为一个反问题(与计算给定PDE的解决方案的经典前进问题相反)。反问题的理论正在迅速发展,但我们仍然不了解该主题中的许多基本问题,尤其是,目前尚不理解如何最好地计算PDE的系数,从部分解决方案到方程式到方程式 - 换句话说,如何从录制的声音回声中制作出最准确的图片!拟议的研究计划的总体目标是开发:(1)解决反问题的新型数学方法; (2)与更广泛的科学界有关的波浪现象有关的新计算技术,包括物理学家和工程师; (3)将数学见解转化为实用的现实成像技术。这项研究既涉及纯数学,包括对PDE和相关领域的分析,以及计算方法,包括算法的设计,实施和分析,并且将涉及一组有才华的研究生,博士后研究人员和国际合作者组成的多样化团队。 实现该计划的目标不仅会产生新的数学并提高我们对波浪现象的科学理解,而且还提供了增强诊断成像能力的可能性,以及对我们依赖的建筑物和结构的非破坏性测试。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gibson, Peter其他文献

Acceptance commitment therapy (ACT) for psychological distress associated with inflammatory bowel disease (IBD): protocol for a feasibility trial of the ACTforIBD programme.
  • DOI:
    10.1136/bmjopen-2021-060272
  • 发表时间:
    2022-06-10
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Evans, Subhadra;Olive, Lisa;Dober, Madeleine;Knowles, Simon;Fuller-Tyszkiewicz, Matthew;Eric, O.;Gibson, Peter;Raven, Leanne;Gearry, Richard;McCombie, Andrew;van Niekerk, Leesa;Chesterman, Susan;Romano, Daniel;Mikocka-Walus, Antonina
  • 通讯作者:
    Mikocka-Walus, Antonina
Treatment of Unexplained Chronic Cough CHEST Guideline and Expert Panel Report
  • DOI:
    10.1378/chest.15-1496
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    Gibson, Peter;Wang, Gang;Birring, Surinder S.
  • 通讯作者:
    Birring, Surinder S.
Sputum colour can identify patients with neutrophilic inflammation in asthma
  • DOI:
    10.1136/bmjresp-2017-000236
  • 发表时间:
    2017-11-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Pabreja, Kavita;Gibson, Peter;Simpson, Jodie L.
  • 通讯作者:
    Simpson, Jodie L.
Multidimensional assessment in severe asthma: A systematic review
  • DOI:
    10.1183/1393003.congress-2017.pa1090
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
    24.3
  • 作者:
    Clark, Vanessa;Gibson, Peter;McDonald, Vanessa
  • 通讯作者:
    McDonald, Vanessa
Diagnosis and treatment of functional gastrointestinal disorders in the Asia-Pacific region: A survey of current practices
  • DOI:
    10.1111/j.1440-1746.2011.06635.x
  • 发表时间:
    2011-04-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Miura, Soichiro;Sugano, Kentaro;Gibson, Peter
  • 通讯作者:
    Gibson, Peter

Gibson, Peter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gibson, Peter', 18)}}的其他基金

Gabor analysis of linear operators, inverse spectral theory, and applications
线性算子的 Gabor 分析、逆谱理论及应用
  • 批准号:
    312523-2005
  • 财政年份:
    2010
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Gabor analysis of linear operators, inverse spectral theory, and applications
线性算子的 Gabor 分析、逆谱理论及应用
  • 批准号:
    312523-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Gabor analysis of linear operators, inverse spectral theory, and applications
线性算子的 Gabor 分析、逆谱理论及应用
  • 批准号:
    312523-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Gabor analysis of linear operators, inverse spectral theory, and applications
线性算子的 Gabor 分析、逆谱理论及应用
  • 批准号:
    312523-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Inverse problems for discrete systems of oscillators in 2 & 3 dimensions
2 中离散振荡器系统的反演问题
  • 批准号:
    231108-2000
  • 财政年份:
    2001
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Postdoctoral Fellowships
Inverse problems for discrete systems of oscillators in 2 & 3 dimensions
2 中离散振荡器系统的反演问题
  • 批准号:
    231108-2000
  • 财政年份:
    2000
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Postdoctoral Fellowships

相似国自然基金

逆散射理论中传输特征值问题的虚拟元方法研究
  • 批准号:
    12301532
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
结合资源受限和机会约束的并行机调度问题及其逆优化研究
  • 批准号:
    72371187
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
传导边界条件下逆声波散射问题的唯一性研究
  • 批准号:
    12301542
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
光波经多类粒子集合散射后的统计光学特性及其逆问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向电磁场逆问题的高维多目标电磁学优化算法研究
  • 批准号:
    62201021
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Advanced Studies and Developments on Discrete Preimage Problems
离散原像问题的最新研究与进展
  • 批准号:
    22H00532
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Mathematical model development of emotion dimensions based on variation of uncertainty and its application to inverse problems
基于不确定性变化的情感维度数学模型建立及其在反问题中的应用
  • 批准号:
    21H03528
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Neuroimage-driven biophysical inverse problems for atrophy and tau propagation
神经图像驱动的萎缩和 tau 传播的生物物理逆问题
  • 批准号:
    10302105
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
Mathematical analysis of inverse problems and modelling for complex fluids and diffusion in heterogeneous media
逆问题的数学分析以及复杂流体和非均匀介质中扩散的建模
  • 批准号:
    20H00117
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Mathematical analysis for fractional diffusion-wave equations and related inverse problems
分数扩散波方程及相关反问题的数学分析
  • 批准号:
    20K14355
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了