Advancements in Cure Rate Modelling and Analysis of Multi-state Coherent Systems
多态相干系统治愈率建模和分析的进展
基本信息
- 批准号:RGPIN-2020-06733
- 负责人:
- 金额:$ 3.13万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During the past six years, my research has primarily focused in the areas of Survival Analysis, Reliability Analysis, Distribution Theory, Ordered Data Analysis and Stochastic Orderings. During the next five years, I plan to pursue some outstanding problems in all these areas. SURVIVAL ANALYSIS: Due to the great advancements in the treatments of some diseases including cancer and heart disease, a certain proportion of patients respond favourably to a treatment and may not show recurrence for a very long period of time. They are referred to as "cured individuals" or "long-term survivors" meaning that they have reached a health stage wherein the disease is undetectable and would not recur over a long period. For estimating this cure proportion, many flexible cure rate models and associated inferential methods have been discussed in the literature. In this project, I plan to develop a novel class of multi-stage destructive cure models to model the possible destruction of cancerous cells that can happen at multiple times, for example, after the administration of each chemotherapy or radiation treatment. I then plan to develop inferential methods for such a multi-stage destructive cure model. RELIABILITY ANALYSIS: Analysis of coherent system lifetime data has been studied extensively using the concept of "system signature". Efficient inferential methods have been developed for lifetime characteristics of systems and of components using signatures. But, most of these developments are on two-state systems (either up or down). Here, I plan to consider multi-state coherent systems with binary components and study the corresponding system signatures, ordered system signatures and their properties. I then plan to use them to develop inferential methods. DISTRIBUTION THEORY: Several bivariate and multivariate discrete distributions have been studied in the literature. I plan to use the COM-Poisson model, general bivariate Poisson model and compounding to develop flexible multivariate discrete distributions and also develop inferential methods for them. ORDERED DATA ANALYSIS AND STOCHASTIC ORDERINGS: Recently various stochastic orderings have been discussed for minima and maxima from Proportional Hazards, Proportional Reversed Hazards and Scale families, and their application to claim amounts in Actuarial Science. I plan to extend these results to general order statistics and also to generalize to dependent case. Anticipated Outcomes and Benefits to the Field and to Canada: Most post-docs and PhD students I supervised have taken up positions in many Universities, including Calgary, Manitoba, Waterloo, Ottawa and McMaster in Canada, and Purdue, Syracuse, Southern Methodist, Minnesota, and Texas in USA. Some others have joined Canadian companies such as Bombardier, BMO, Scotia Bank, CIBC, TD Bank, GE Capital, Rogers and Canadian Tire. I anticipate the proposed research work to result in similar outcomes and benefits.
在过去的六年中,我的研究主要集中在生存分析的领域,分布理论的生存:由于治疗方法的进步,包括癌症和心脏病,可能不会在很长的时间内表现出很长的时间时间。在您的文献中已经讨论了方法。或使用“系统签名”的概念,可以使用“系统签名”的概念,并使用二进制系统的系统来开发辐射治疗。系统系统系统签名和属性I然后计划开发推断分布理论:严重性双变量和多变量离散分布已在文献中死亡。开发灵活的多分布Andered数据分析和随机订单:最近从比例危害,比例的混响和规模家庭中为最小值和最大值提供了各种随机订单,以及他们要求扩展一般统计学的应用。我所监督的大多数案件。资本,罗杰斯和加拿大轮胎。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Balakrishnan, Narayanaswamy其他文献
On Tsallis extropy with an application to pattern recognition
- DOI:
10.1016/j.spl.2021.109241 - 发表时间:
2021-09-30 - 期刊:
- 影响因子:0.8
- 作者:
Balakrishnan, Narayanaswamy;Buono, Francesco;Longobardi, Maria - 通讯作者:
Longobardi, Maria
On the performance of coefficient of variation charts in the presence of measurement errors
- DOI:
10.1002/qre.2402 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:2.3
- 作者:
Kim Phuc Tran;Heuchenne, Cedric;Balakrishnan, Narayanaswamy - 通讯作者:
Balakrishnan, Narayanaswamy
EM Algorithm for One-Shot Device Testing With Competing Risks Under Weibull Distribution
- DOI:
10.1109/tr.2015.2500361 - 发表时间:
2016-06-01 - 期刊:
- 影响因子:5.9
- 作者:
Balakrishnan, Narayanaswamy;So, Hon Yiu;Ling, Man Ho - 通讯作者:
Ling, Man Ho
Bayesian growth curve model useful for high-dimensional longitudinal data
- DOI:
10.1080/02664763.2018.1517145 - 发表时间:
2019-04-04 - 期刊:
- 影响因子:1.5
- 作者:
Jana, Sayantee;Balakrishnan, Narayanaswamy;Hamid, Jemila S. - 通讯作者:
Hamid, Jemila S.
Mean Residual Life Function, Associated Orderings and Properties
- DOI:
10.1109/tr.2009.2035791 - 发表时间:
2010-03-01 - 期刊:
- 影响因子:5.9
- 作者:
Nanda, Asok K.;Bhattacharjee, Subarna;Balakrishnan, Narayanaswamy - 通讯作者:
Balakrishnan, Narayanaswamy
Balakrishnan, Narayanaswamy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Balakrishnan, Narayanaswamy', 18)}}的其他基金
Advancements in Cure Rate Modelling and Analysis of Multi-state Coherent Systems
多态相干系统治愈率建模和分析的进展
- 批准号:
RGPIN-2020-06733 - 财政年份:2021
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Advancements in Cure Rate Modelling and Analysis of Multi-state Coherent Systems
多态相干系统治愈率建模和分析的进展
- 批准号:
RGPIN-2020-06733 - 财政年份:2020
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Some parametric and semiparametric inference in survival analysis and reliability
生存分析和可靠性中的一些参数和半参数推理
- 批准号:
RGPIN-2015-05211 - 财政年份:2019
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Some parametric and semiparametric inference in survival analysis and reliability
生存分析和可靠性中的一些参数和半参数推理
- 批准号:
RGPIN-2015-05211 - 财政年份:2018
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Some parametric and semiparametric inference in survival analysis and reliability
生存分析和可靠性中的一些参数和半参数推理
- 批准号:
RGPIN-2015-05211 - 财政年份:2017
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Some parametric and semiparametric inference in survival analysis and reliability
生存分析和可靠性中的一些参数和半参数推理
- 批准号:
RGPIN-2015-05211 - 财政年份:2016
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Some parametric and semiparametric inference in survival analysis and reliability
生存分析和可靠性中的一些参数和半参数推理
- 批准号:
RGPIN-2015-05211 - 财政年份:2015
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Ordered data analyses with applications to reliability and survival analyses
有序数据分析及其在可靠性和生存分析中的应用
- 批准号:
9237-2010 - 财政年份:2014
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Ordered data analyses with applications to reliability and survival analyses
有序数据分析及其在可靠性和生存分析中的应用
- 批准号:
9237-2010 - 财政年份:2013
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Ordered data analyses with applications to reliability and survival analyses
有序数据分析及其在可靠性和生存分析中的应用
- 批准号:
9237-2010 - 财政年份:2012
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于图表示学习的乙肝临床治愈关键代谢基因识别
- 批准号:62301362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HIV双特异性抗体A70功能性治愈艾滋病恒河猴的分子机制研究
- 批准号:32370995
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
脆弱拟杆菌与支链氨基酸协同纠正慢乙肝CD4/CD8 T细胞“失能”的机制及其对临床治愈的诊疗价值
- 批准号:82372318
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
治愈模型下的治疗敏感亚组的识别研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗体分泌细胞在IFN-α治疗儿童慢乙肝功能性治愈中的作用机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimizing the dose of tafenoquine for the radical cure of Plasmodium vivax malaria in Southeast Asia
优化他非诺喹的剂量以根治东南亚间日疟原虫疟疾
- 批准号:
10703688 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Natural Product Inspired Novel Antimalarials with Radical Cure Potential
受天然产物启发的具有根治潜力的新型抗疟药
- 批准号:
10635649 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Development of a RIG-I agonist RNA as a cure for chronic Hepatitis B
开发 RIG-I 激动剂 RNA 来治疗慢性乙型肝炎
- 批准号:
10699796 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Development of Allogeneic CAR T Cell Therapy for a Functional Cure of HIV Infection
开发同种异体 CAR T 细胞疗法以功能性治愈 HIV 感染
- 批准号:
10480991 - 财政年份:2022
- 资助金额:
$ 3.13万 - 项目类别: