Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
基本信息
- 批准号:RGPIN-2020-06311
- 负责人:
- 金额:$ 1.3万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematical programming remains the most useful ---and sometimes only--- tool to model and support the decision making of several problems arising in logistics and machine learning. The long-term goal of this Discovery program points toward proposing novel models and algorithms for the solution of several classes of discrete optimization problems arising in these two areas, with a particular emphasis in the handling of very large--scale datasets. State--of--the--art models and algorithms for several classes of problems arising in logistics and machine learning have shown to be efficient to handle small-- to medium--size problems, but remain of limited use in the large--scale. The short--term objectives described in this proposal attempt to address the following three areas: 1) decremental relaxation methods for large-scale optimization; 2) scalable meta and matheuristics for very large-scale optimization; 3) refinements for the exact solution of vehicle routing and scheduling problems. 1. Decremental relaxation is a decomposition technique in which the decision maker iterates between a restricted (yet potentially hard) problem and a pricing subproblem (often easy even in the large--scale). The reduced problem provides a relaxation of the original problem, while the subproblem refines this problem as needed. This scheme has been proven to be exceptionally efficient for handling minimax and maximin objectives. We will investigate the use and limits of this technique for similar ---yet not so extreme--- objectives as those arising from ordered median location problems. 2. Meta and matheuristics remain the algorithmic schemes of choice for handling some very large combinatorial problems, as they avoid at all times the solution of very hard--to--solve integer programs. However, they may still suffer from scalability issues in the large-scale. We will contribute towards the development of novel meta and matheuristics with better scalability properties in the very-large scale. 3. Column generation remains the leading optimization technique for handling a vast family of vehicle routing and scheduling problems. Little attention has been given to techniques to handle degeneracy. This grant proposal will investigate refinements involving the acceleration of subproblems and of the restricted master problem. For the former, we will investigate selective pricing strategies. For the latter, we will focus on the development of a theoretical framework allowing for an efficient handling of degeneracy. In all cases, the training of HQP remains at the heart of this Discovery research program. The HQP associated with this research program will develop strong analytical skills at the interface between mathematical optimization, logistics and machine learning. This is a set of skills of extremely high relevance for the Canadian economy.
数学编程仍然是最有用的工具,有时也是唯一的工具,用于对物流和机器学习中出现的几个问题进行建模和支持决策。该 Discovery 计划的长期目标是提出新颖的模型和算法来解决这两个领域中出现的几类离散优化问题,特别强调处理超大规模数据集。针对物流和机器学习中出现的几类问题的最先进的模型和算法已被证明可以有效地处理中小型问题,但在大型问题中的用途仍然有限。 -规模。该提案中描述的短期目标试图解决以下三个领域:1)大规模优化的递减松弛方法; 2)用于超大规模优化的可扩展元和数学; 3)改进车辆路径和调度问题的精确解决方案。 1. 递减松弛是一种分解技术,其中决策者在受限(但可能很困难)问题和定价子问题(即使在大规模问题中也通常很容易)之间进行迭代。简化的问题提供了原始问题的松弛,而子问题则根据需要细化了该问题。该方案已被证明对于处理极小极大和极大极小目标非常有效。我们将研究这种技术的使用和限制,以实现与有序中值位置问题引起的类似(但不是那么极端)目标。 2. 元数学和数学仍然是处理一些非常大的组合问题的算法方案,因为它们始终避免解决非常难以解决的整数程序。然而,它们可能仍然面临大规模的可扩展性问题。我们将为新型元和数学的发展做出贡献,在超大规模上具有更好的可扩展性。 3. 列生成仍然是处理大量车辆路线和调度问题的领先优化技术。很少有人关注处理简并性的技术。该拨款提案将研究涉及子问题和受限主问题加速的改进。对于前者,我们将研究选择性定价策略。对于后者,我们将专注于开发一个能够有效处理简并性的理论框架。在所有情况下,总部的培训仍然是该发现研究计划的核心。与该研究项目相关的总部将在数学优化、物流和机器学习之间培养强大的分析技能。这是一套与加拿大经济极其相关的技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Contardo, Claudio其他文献
New Enhancements for the Exact Solution of the Vehicle Routing Problem with Time Windows
- DOI:
10.1287/ijoc.2016.0744 - 发表时间:
2017-06-01 - 期刊:
- 影响因子:2.1
- 作者:
Pecin, Diego;Contardo, Claudio;Uchoa, Eduardo - 通讯作者:
Uchoa, Eduardo
On the optimal layout of a dining room in the era of COVID-19 using mathematical optimization
- DOI:
10.1111/itor.13139 - 发表时间:
2022-04-05 - 期刊:
- 影响因子:3.1
- 作者:
Contardo, Claudio;Costa, Luciano - 通讯作者:
Costa, Luciano
A new exact algorithm for the multi-depot vehicle routing problem under capacity and route length constraints
- DOI:
10.1016/j.disopt.2014.03.001 - 发表时间:
2014-05-01 - 期刊:
- 影响因子:1.1
- 作者:
Contardo, Claudio;Martinelli, Rafael - 通讯作者:
Martinelli, Rafael
The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method
- DOI:
10.1016/j.ejor.2009.01.022 - 发表时间:
2010-02-01 - 期刊:
- 影响因子:6.4
- 作者:
Cortes, Cristian E.;Matamala, Martin;Contardo, Claudio - 通讯作者:
Contardo, Claudio
Contardo, Claudio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Contardo, Claudio', 18)}}的其他基金
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
- 批准号:
RGPIN-2020-06311 - 财政年份:2022
- 资助金额:
$ 1.3万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
- 批准号:
RGPIN-2020-06311 - 财政年份:2021
- 资助金额:
$ 1.3万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
- 批准号:
RGPIN-2020-06311 - 财政年份:2020
- 资助金额:
$ 1.3万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
面向大规模盲源分离的高维度大尺寸张量分解方法研究
- 批准号:62071082
- 批准年份:2020
- 资助金额:54 万元
- 项目类别:面上项目
含规模化新能源接入的交直流大电网动态无功储备评估“时间-空间-优化”降维等值方法研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:
面向科学大装置超大规模数据流的定制计算研究
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:联合基金项目
利用Cas9大规模基因敲除技术在HIV-1潜伏细胞上筛选及鉴定与HIV潜伏相关的关键宿主基因
- 批准号:31771484
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于热点导航的大图数据迭代计算过程可视化关键技术研究
- 批准号:61602103
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
- 批准号:
2327013 - 财政年份:2023
- 资助金额:
$ 1.3万 - 项目类别:
Standard Grant
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:
10825737 - 财政年份:2023
- 资助金额:
$ 1.3万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 1.3万 - 项目类别:
NOVEL DECOMPOSITION ALGORITHMS FOR GUARANTEED GLOBAL OPTIMIZATION OF LARGE-SCALE NONCONVEX STOCHASTIC PROGRAMS
确保大规模非凸随机程序全局优化的新颖分解算法
- 批准号:
2232588 - 财政年份:2023
- 资助金额:
$ 1.3万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311274 - 财政年份:2023
- 资助金额:
$ 1.3万 - 项目类别:
Standard Grant