Second-order Hessian-free methods for statistical learning and stochastic optimization
用于统计学习和随机优化的二阶无 Hessian 方法
基本信息
- 批准号:RGPIN-2022-04400
- 负责人:
- 金额:$ 3.13万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The success of machine learning this last decade has had a deep impact in the mathematical optimization community and renewed interest in methods as stochastic gradient descent. Such an approach has the advantage to provide cheap iterations, allowing fast progress at the beginning of the optimization, and to avoid the storage of dense matrices, prohibited when dealing with a very large number of parameters. They however have difficulties to converge close to the solution, relying to vanishing step sizes to guarantee theoretical convergence. The algorithm can present difficulties to reach a vicinity of solution depending on the starting point. We investigate second-order Hessian-free strategies to capitalize on the existing nonlinear programming theory, while allowing to scale with the number of data and decision variables. The methods rely on adaptive sample average approximations (SAA), controlling the sample size with respect to the achieved estimated objective function reduction when compared to the statistical noise, within a trust-region framework and standard variance reduction techniques. At each iteration, quasi-Newton candidate iterates can be obtained without explicit matrix storage, and we explore how to use the structure of typical estimation problems to improve the approach. A second objective of the proposed research consists in capitalizing on the statistical information that we obtain on the model to develop better early stopping strategies. They are especially important as large samples are required close to the solution, leading to costly iterations. Another benefit is the possibility to provide the modeler with some information about the residual uncertainty at the found solution. We also explore the effect of observations that are not independently and identically distributed, as they could lead to biased solutions, and possibly have a negative impact on some social communities when the model is used to elaborate policies that impact individuals, for instance in transportation or energy. Similarly, model misspecifications are important to analyze, both in terms of algorithm convergence and in terms of solution robustness. Another important aspect that we consider is the feasible set as most of the optimization algorithms used in machine learning are designed for unconstrained problems only. However, many real applications, for instance in energy, include nonlinear constraints whose expressions can depend on the realization of the uncertainty, and the feasible set is not guaranteed to be convex. A standard approach is to turn to methods aiming to find a KKT solution, but stochastic approximation methods have received much less attention in this context, and SAA methods present additional challenges too, as adaptive sampling strategies face more difficulties to exploit the information geometry and the sample can have to be adjusted when it is important to satisfy some constraints for all or nearly all scenarios.
在过去的十年中,机器学习的成功对数学优化社区产生了深远的影响,并重新兴趣作为随机梯度下降。这种方法具有提供廉价迭代的优势,可以在优化开始时快速进步,并避免在处理大量参数时禁止储存密集的矩阵。但是,他们很难依靠消失的步进大小来确保理论收敛。根据起点,该算法可能会带来难以到达解决方案附近。我们研究了二阶无Hessian策略,以利用现有的非线性编程理论,同时允许随数据和决策变量的数量扩展。这些方法依赖于自适应样本平均值(SAA),在与统计噪声相比,在信任区域框架和降低标准方差降低技术中相比,相对于所达到的估计目标功能降低的样本量。在每次迭代中,可以在没有明确矩阵存储的情况下获得准牛顿候选迭代术,我们探索如何使用典型估计问题的结构来改善方法。拟议研究的第二个目标是利用我们在模型上获得的统计信息,以制定更好的早期停止策略。它们尤其重要,因为需要大型样品靠近解决方案,从而导致了昂贵的迭代。另一个好处是,在发现的解决方案下,有可能向建模者提供有关残余不确定性的一些信息。我们还探讨了观察结果并非独立和分布相同的观察结果,因为它们可能导致有偏见的解决方案,并且当该模型被用来详细影响个人的政策,例如在运输或能源方面,可能会对某些社会社区产生负面影响。同样,在算法收敛和解决方案鲁棒性方面,模型拼写错误对于分析都很重要。我们认为的另一个重要方面是可行的集合,因为机器学习中使用的大多数优化算法仅用于无限制问题。但是,许多实际应用,例如在能量中,包括非线性约束,其表达方式可以取决于不确定性的实现,并且不保证可行的集合是凸的。一种标准的方法是转向旨在找到KKT解决方案的方法,但是在这种情况下,随机近似方法受到了更少的关注,而SAA方法也带来了其他挑战,因为自适应采样策略面临更多的困难来利用信息几何形状,并且在满足某些场景或几乎所有场景的情况下,必须调整样品,并且必须调整样本,并且必须受到调整。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bastin, Fabian其他文献
Dynamic discrete choice model for railway ticket cancellation and exchange decisions
- DOI:
10.1016/j.tre.2017.12.004 - 发表时间:
2018-02-01 - 期刊:
- 影响因子:10.6
- 作者:
Cirillo, Cinzia;Bastin, Fabian;Hetrakul, Pratt - 通讯作者:
Hetrakul, Pratt
Bastin, Fabian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bastin, Fabian', 18)}}的其他基金
On the exploitation of uncertainty in exact and approximate optimization
关于精确和近似优化中不确定性的利用
- 批准号:
RGPIN-2017-05798 - 财政年份:2021
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
On the exploitation of uncertainty in exact and approximate optimization
关于精确和近似优化中不确定性的利用
- 批准号:
RGPIN-2017-05798 - 财政年份:2020
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
On the exploitation of uncertainty in exact and approximate optimization
关于精确和近似优化中不确定性的利用
- 批准号:
RGPIN-2017-05798 - 财政年份:2019
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Development of demand forecasting and inventory management models in the alcohol market
酒类市场需求预测和库存管理模型的开发
- 批准号:
528211-2018 - 财政年份:2018
- 资助金额:
$ 3.13万 - 项目类别:
Engage Grants Program
On the exploitation of uncertainty in exact and approximate optimization
关于精确和近似优化中不确定性的利用
- 批准号:
RGPIN-2017-05798 - 财政年份:2018
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Développement de modèles alternatifs de risque de crédits avec des réseaux artificiels de neurones
神经元人工研究风险的替代模型的开发
- 批准号:
521783-2017 - 财政年份:2017
- 资助金额:
$ 3.13万 - 项目类别:
Engage Grants Program
On the exploitation of uncertainty in exact and approximate optimization
关于精确和近似优化中不确定性的利用
- 批准号:
RGPIN-2017-05798 - 财政年份:2017
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Towards new solution techniques in mathematical programming with scenarios
迈向场景数学规划的新解决技术
- 批准号:
342368-2012 - 财政年份:2015
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Towards new solution techniques in mathematical programming with scenarios
迈向场景数学规划的新解决技术
- 批准号:
342368-2012 - 财政年份:2014
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Towards new solution techniques in mathematical programming with scenarios
迈向场景数学规划的新解决技术
- 批准号:
342368-2012 - 财政年份:2013
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
不确定非线性系统凸优化模糊自适应命令滤波反步控制及应用
- 批准号:62303255
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Order的SIS/LWE变体问题及其应用
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于Order的SIS/LWE变体问题及其应用
- 批准号:62272104
- 批准年份:2022
- 资助金额:53.00 万元
- 项目类别:面上项目
针对动态无线充电系统的基于事件触发和命令滤波的保性能控制方法研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
不确定非线性约束系统的有限时间命令滤波模糊控制
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
- 批准号:
EP/Y002474/1 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Research Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Continuing Grant
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
- 批准号:
2341000 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构化网格技术
- 批准号:
2348394 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant