Advanced devices and algorithms for energy disaggregation in buildings
用于建筑物能量分解的先进设备和算法
基本信息
- 批准号:RGPIN-2017-06469
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Energy disaggregation (also referred as nonintrusive load monitoring) is a combination of signal processing and pattern recognition techniques to estimate the energy consumption of individual appliances from the total energy consumption signal. It is achieved by identifying discriminating features in the aggregated signal and decomposing it into its constituent parts. Disaggregation of the energy consumption data down to the level of appliances has been largely identified as an opportunity for enhanced energy efficiency through citizen awareness, energy demand prediction tools for utilities and smart automatic control of appliances, just to name a few.This research program seeks to advance the field of energy disaggregation to efficiently determine the power consumption of individual electrical loads in real-life scenarios. This will be achieved by building on the applicant's team latest developments in Hall-effect current sensor devices and weakly-supervised machine learning algorithms. Specifically, we will 1) design new energy disaggregation algorithms for residential applications using weakly labeled data from low-precision current sensors, 2) analyze the sensitivity of the disaggregation algorithms to the accuracy and quantity of sensor information, 3) design the next generation of ultra-low-power Hall-effect current sensors and 4) design new energy disaggregation algorithms for commercial and industrial applications with an optimal number of low-precision sensors. These advances will increase the accuracy, the scalability and the adaptability of existing techniques.This research program will train four HQP in domains which are in high demand in industry and academia, gaining important skills in signal processing, machine learning and microelectronics. The research results could also be the starting point of new collaborations, as energy disaggregation is gaining interest from industry and utilities, as confirmed by recent important investments in this field.Natural Resources Canada established that "the Canadian buildings sector has a duty to use our energy resources responsibly and take up the call to action as a mechanism that will strengthen and enrich our economy for future generations." This research program is an important step in that direction, through the development of novel technologies to monitor energy consumption more efficiently, and eventually, enabling leading-edge energy management technologies for smart buildings.
能源分解(也称为非侵入式负载监控)是信号处理和模式识别技术的结合,用于根据总能耗信号估计单个设备的能耗。它是通过识别聚合信号中的区分特征并将其分解为其组成部分来实现的。将能源消耗数据细分到电器级别已在很大程度上被认为是通过公民意识、公用事业能源需求预测工具和电器智能自动控制等来提高能源效率的机会。该研究计划寻求推进能源分解领域,以有效确定现实生活场景中各个电力负载的功耗。这将通过申请人团队在霍尔效应电流传感器器件和弱监督机器学习算法方面的最新开发成果来实现。具体来说,我们将 1) 使用来自低精度电流传感器的弱标记数据设计用于住宅应用的新能源分解算法,2) 分析分解算法对传感器信息的准确性和数量的敏感性,3) 设计下一代超低功耗霍尔效应电流传感器,4) 为商业和工业应用设计新的能源分解算法,并使用最佳数量的低精度传感器。这些进步将提高现有技术的准确性、可扩展性和适应性。该研究计划将在工业界和学术界高需求的领域培训四名 HQP,获得信号处理、机器学习和微电子方面的重要技能。研究结果也可能成为新合作的起点,因为能源分类正在引起工业界和公用事业公司的兴趣,这一点最近在该领域的重要投资证实了这一点。加拿大自然资源部规定,“加拿大建筑部门有责任使用我们的负责任地利用能源资源,并响应号召采取行动,作为一种机制,为子孙后代加强和丰富我们的经济。”该研究计划是朝这个方向迈出的重要一步,通过开发新技术来更有效地监控能源消耗,并最终为智能建筑提供领先的能源管理技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gagnon, Ghyslain其他文献
Measuring Disentanglement: A Review of Metrics
- DOI:
10.1109/tnnls.2022.3218982 - 发表时间:
2022-11-14 - 期刊:
- 影响因子:10.4
- 作者:
Carbonneau, Marc-Andre;Zaidi, Julian;Gagnon, Ghyslain - 通讯作者:
Gagnon, Ghyslain
Multistatic Radar Placement Optimization for Cooperative Radar-Communication Systems
- DOI:
10.1109/lcomm.2018.2837913 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:0
- 作者:
Ben Kilani, Moez;Gagnon, Ghyslain;Gagnon, Francois - 通讯作者:
Gagnon, Francois
Multiple instance learning: A survey of problem characteristics and applications
- DOI:
10.1016/j.patcog.2017.10.009 - 发表时间:
2018-05-01 - 期刊:
- 影响因子:8
- 作者:
Carbonneau, Marc-Andre;Cheplygina, Veronika;Gagnon, Ghyslain - 通讯作者:
Gagnon, Ghyslain
Detection of alarms and warning signals on an digital in-ear device
- DOI:
10.1016/j.ergon.2012.07.001 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:3.1
- 作者:
Carbonneau, Marc-Andre;Lezzoum, Narimene;Gagnon, Ghyslain - 通讯作者:
Gagnon, Ghyslain
Bag-Level Aggregation for Multiple-Instance Active Learning in Instance Classification Problems
- DOI:
10.1109/tnnls.2018.2869164 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:10.4
- 作者:
Carbonneau, Marc-Andre;Granger, Eric;Gagnon, Ghyslain - 通讯作者:
Gagnon, Ghyslain
Gagnon, Ghyslain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gagnon, Ghyslain', 18)}}的其他基金
Advanced devices and algorithms for energy disaggregation in buildings
用于建筑物能量分解的先进设备和算法
- 批准号:
RGPIN-2017-06469 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
New signal processing, circuits and materials for robust and affordable capacitively-coupled electrocardiography
新的信号处理、电路和材料,用于稳定且经济实惠的电容耦合心电图
- 批准号:
514369-2017 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative Research and Development Grants
Advanced devices and algorithms for energy disaggregation in buildings
用于建筑物能量分解的先进设备和算法
- 批准号:
RGPIN-2017-06469 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Low Latency and Highly Secure Protocols for Critical Communications
适用于关键通信的低延迟和高度安全协议
- 批准号:
494694-2016 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative Research and Development Grants
Feature Learning of Critical Live Performance Audio Characteristics for a Virtual Sound Engineer
虚拟音响工程师关键现场表演音频特征的特征学习
- 批准号:
538056-2019 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program
Low Latency and Highly Secure Protocols for Critical Communications
适用于关键通信的低延迟和高度安全协议
- 批准号:
494694-2016 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative Research and Development Grants
Advanced devices and algorithms for energy disaggregation in buildings
用于建筑物能量分解的先进设备和算法
- 批准号:
RGPIN-2017-06469 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
New signal processing, circuits and materials for robust and affordable capacitively-coupled electrocardiography
新的信号处理、电路和材料,用于稳定且经济实惠的电容耦合心电图
- 批准号:
514369-2017 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative Research and Development Grants
Advanced devices and algorithms for energy disaggregation in buildings
用于建筑物能量分解的先进设备和算法
- 批准号:
RGPIN-2017-06469 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Advanced devices and algorithms for energy disaggregation in buildings
用于建筑物能量分解的先进设备和算法
- 批准号:
RGPIN-2017-06469 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
非完备设备运行数据隐性复合故障诊断算法研究
- 批准号:62302103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向电气设备多物理场时域仿真的间断伽辽金算法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于非调制声音信号的非智能设备室内定位算法研究
- 批准号:62002104
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于级联回归模型的电力设备异常状态图像检测算法研究
- 批准号:62001416
- 批准年份:2020
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
变电站系统抗震韧性分析方法与提升技术
- 批准号:51908519
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
- 批准号:
10629554 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Novel wearable sensor calibration and validation for automated measurement of screen time in children
新型可穿戴传感器校准和验证,用于自动测量儿童屏幕时间
- 批准号:
10585840 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Advanced thin-slab TOF-PET detector module for next generation of brain PET
用于下一代大脑 PET 的先进薄板 TOF-PET 探测器模块
- 批准号:
10719570 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
A multi-modal approach for efficient, point-of-care screening of hypertrophic cardiomyopathy
一种高效、即时筛查肥厚型心肌病的多模式方法
- 批准号:
10749588 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
A ratcheting pediatric prosthetic finger using advanced rapid manufacturing technology
采用先进快速制造技术的棘轮儿童假肢手指
- 批准号:
10760098 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别: