Innovative High-Efficiency and High-Reliability Power Electronics Technologies for Renewable Energy Systems
适用于可再生能源系统的创新型高效率、高可靠性电力电子技术
基本信息
- 批准号:RGPIN-2022-03312
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Increasing global warming and depleting fossil fuels have led to a growing interest in utilizing clean renewable energy. Canada has huge potential for renewable energy production. However, the integration of renewable energy into the power grid is challenging due to the cost, complexity and implementation of the necessary infrastructure, and the intermittent nature of renewable power production. Power electronics inverters are the enabling technology for the integration of renewable energy such as wind and solar energy into the power grid. However, a large portion of the renewable power is lost to heat in the power conversion stage due to inefficiencies of the power inverters. Therefore, research efforts are needed not only to increase renewable power production but to also decrease power losses with the new efficient power conversion systems, and to overcome the current technological barriers in power inverters such as high inverter sizes, high cost, low reliability, and low power density. The number of grid-connected non-linear loads such as electric vehicles when charging is continuously increasing. The intermittent nature of renewable power and the increasing number of non-linear loads severely affect the grid power quality. Therefore, research is required to develop advanced power inverters not only to integrate renewable power into the grid but to also mitigate grid power quality issues. The proposed research program will develop new ultra high-efficiency and high-reliability DC-AC inverter technologies with the latest Wide Band Gap (WBG) and Gallium Nitride (GaN) devices for renewable energy integration and grid power quality improvement. This research program will develop new non-isolated single-stage buck-boost DC-AC inverters to reduce the number of power processing stages, power losses, cost, and size; Develop new single-stage isolated DC-AC inverters to improve efficiency and power density; Improve the reliability of the proposed new inverters by eliminating shoot-through, and reduce the magnetic volume by integrating the magnetic components; and Develop digital control strategies for the proposed inverters to integrate renewable energy sources and mitigate the grid power quality issues. The proposed research program in the long terms will build and implement various prototypes of the new DC-AC inverters meeting the design and constraints of commercial products, and commercialize the developed inverter technologies to bring a broader societal impact. The findings and technological advancement from the proposed research will be shared with Canadian power electronics companies, power utilities, power engineers and researchers. The proposed research program will provide industry-driven training and collaboration opportunities for students in renewable energy integration and conversion. The students trained through this research program will become highly qualified engineers and technology leaders in the Canadian workforce.
全球变暖的加剧和化石燃料的消耗导致人们对利用清洁可再生能源的兴趣日益浓厚。加拿大在可再生能源生产方面具有巨大潜力。然而,由于必要基础设施的成本、复杂性和实施,以及可再生能源生产的间歇性,将可再生能源并入电网具有挑战性。电力电子逆变器是将风能和太阳能等可再生能源并入电网的使能技术。然而,由于功率逆变器效率低下,很大一部分可再生能源在功率转换阶段以热量的形式损失了。因此,需要进行研究,不仅要增加可再生能源发电量,还要通过新型高效电力转换系统减少电力损耗,并克服当前电力逆变器的技术障碍,例如逆变器尺寸大、成本高、可靠性低和低功率密度。充电时电动汽车等并网非线性负载数量不断增加。可再生能源的间歇性和非线性负荷的增加严重影响了电网的电能质量。因此,需要研究开发先进的电力逆变器,不仅将可再生能源并入电网,而且还可以缓解电网电能质量问题。拟议的研究计划将利用最新的宽带隙(WBG)和氮化镓(GaN)器件开发新型超高效率和高可靠性直流-交流逆变器技术,用于可再生能源整合和电网电能质量改善。该研究计划将开发新型非隔离单级降压-升压直流-交流逆变器,以减少功率处理级的数量、功率损耗、成本和尺寸;开发新型单级隔离式DC-AC逆变器,提高效率和功率密度;通过消除直通来提高所提出的新型逆变器的可靠性,并通过集成磁性元件来减少磁性体积;为拟议的逆变器制定数字控制策略,以整合可再生能源并缓解电网电能质量问题。从长远来看,拟议的研究计划将构建和实施各种新型直流-交流逆变器原型,以满足商业产品的设计和限制,并将开发的逆变器技术商业化,以带来更广泛的社会影响。拟议研究的结果和技术进步将与加拿大电力电子公司、电力公用事业公司、电力工程师和研究人员分享。拟议的研究计划将为学生提供可再生能源整合和转换方面的行业驱动的培训和合作机会。通过该研究项目培训的学生将成为加拿大劳动力中的高素质工程师和技术领导者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khan, Ashraf其他文献
Pathology of Thyroid Gland
- DOI:
10.1007/978-1-4419-1069-1_9 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:0
- 作者:
Khan, Ashraf;Nose, Vania - 通讯作者:
Nose, Vania
Translational Potential of Fluorescence Polarization for Breast Cancer Cytopathology.
- DOI:
10.3390/cancers15051501 - 发表时间:
2023-02-27 - 期刊:
- 影响因子:5.2
- 作者:
Jermain, Peter R.;Kandil, Dina H.;Muzikansky, Alona;Khan, Ashraf;Yaroslavsky, Anna N. - 通讯作者:
Yaroslavsky, Anna N.
Polarization-Sensitive Multimodal Imaging for Detecting Breast Cancer
- DOI:
10.1158/0008-5472.can-13-2411 - 发表时间:
2014-09-01 - 期刊:
- 影响因子:11.2
- 作者:
Patel, Rakesh;Khan, Ashraf;Yaroslavsky, Anna N. - 通讯作者:
Yaroslavsky, Anna N.
Fibroepithelial Tumors of the Breast Pathologic and Immunohistochemical Features and Molecular Mechanisms
- DOI:
10.5858/arpa.2012-0443-ra - 发表时间:
2014-01-01 - 期刊:
- 影响因子:4.6
- 作者:
Yang, Xiaofang;Kandil, Dina;Khan, Ashraf - 通讯作者:
Khan, Ashraf
Cell blocks of breast FNAs frequently allow diagnosis of invasion or histological classification of proliferative changes
- DOI:
10.1002/dc.20630 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:1.3
- 作者:
Istvanic, Smiljana;Fischer, Andrew H.;Khan, Ashraf - 通讯作者:
Khan, Ashraf
Khan, Ashraf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khan, Ashraf', 18)}}的其他基金
Innovative High-Efficiency and High-Reliability Power Electronics Technologies for Renewable Energy Systems
适用于可再生能源系统的创新型高效率、高可靠性电力电子技术
- 批准号:
DGECR-2022-00088 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
AlGaN基深紫外LED发光效率和可靠性协同提升机制研究
- 批准号:62374076
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于half-Heusler热电材料的低损耗、高可靠异质界面构筑及服役性能研究
- 批准号:51902333
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于紫外激发荧光玻璃的白光LED封装技术研究
- 批准号:51805196
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高可靠性高量子效率氮化镓基绿光激光器关键技术研究
- 批准号:61804028
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于时间区间型的随机维修策略研究
- 批准号:71801126
- 批准年份:2018
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Enhanced Reliability and Efficiency of Software Regression Testing in the Presence of Flaky Tests
职业:在存在不稳定测试的情况下增强软件回归测试的可靠性和效率
- 批准号:
2338287 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Neural Network Approximation of PDEs - Efficiency, Reliability and Quantifiable Accuracy
偏微分方程的神经网络逼近 - 效率、可靠性和可量化的准确性
- 批准号:
2324364 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
- 批准号:
10364433 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Boosting SUstaiNability, Reliability and EfficiencY of perovskite PV through novel materials and process engineering
通过新型材料和工艺工程提高钙钛矿光伏的可持续性、可靠性和效率
- 批准号:
10058454 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
EU-Funded
Bridging Statistical Hypothesis Tests and Deep Learning for Reliability and Computational Efficiency
连接统计假设检验和深度学习以提高可靠性和计算效率
- 批准号:
2134037 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant