Taming Terahertz Vacuum Fluctuations for a Novel Generation of Nanodevices
抑制太赫兹真空波动以实现新一代纳米器件
基本信息
- 批准号:RGPIN-2019-06138
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Low-dimensional materials represent an extremely appealing solution to overcome the current limits of traditional electronic scaling, as they promise to bring miniaturization down to the level of single atomic layers. This would impact a wide range of opto- and nano-electronic technologies, at the core of a variety of devices (such as personal computers, as well as smart phones, tablets and TVs) that assist us in many aspects of our daily life. A drastic boost in the performance and energy efficiency of these new material platforms is now needed to definitively push their practical implementation. The research program described in this proposal will focus on improving the optical/electrical performance of low-dimensional systems through a completely novel approach, by acting on the very mechanism (phonon scattering - phonons being quanta of lattice vibrations) that is typically responsible for energy dissipation in solids. Unlike current efforts targeting more straightforward but often marginal material optimizations, we will engineer the electromagnetic environment where the materials operate. Indeed, we have recently demonstrated that the intrinsic phonon response of nanomaterials can be modified using properly tailored terahertz nanoplasmonic resonators. This can be achieved without the need of any direct terahertz illumination, by solely exploiting the high "vacuum" electric field associated with terahertz "quantum vacuum fluctuations" in such resonators. The proposed research will address the design and realization of novel nanophotonic architectures for the selective manipulation of the optical phonon response of reduced-dimensionality materials. Devices to be pursued in the mid- to long-term will include advanced LEDs and nanoelectronic circuits, as well as `on chip' terahertz sensor and terahertz data communication systems. In the short-term, activities will be conducted around four inter-related research tracks, exploiting phonon resonance reshaping to develop: (i) miniaturized sources of terahertz radiation that do not require complex optical pumping stations to operate; (ii) schemes for enhancing terahertz nonlinearities at the nanoscale; plasmonic nano-architectures for boosting (iii) optical light emission and (iv) charge transport in two-dimensional materials. The program will ultimately provide general, well-founded guidelines on when and how terahertz vacuum fluctuation design solutions can offer a competitive advantage in obtaining high-performing systems. It can thus pave the way for the development of new advanced technologies, consistently with the immediate needs of the Canadian photonics industry, while also promoting the training of highly qualified personnel, to respond to the scientific and technological challenges of our modern society.
低维材料代表了一个极具吸引力的解决方案,可以克服传统电子缩放的当前限制,因为它们承诺将微型化度降低到单个原子层的水平。这将影响各种设备(例如个人计算机,以及智能手机,平板电脑和电视)的核心,这将影响各种光电和纳米电子技术。现在需要极大地提高这些新材料平台的性能和能源效率,以确定推动其实际实施。本提案中描述的研究计划将着重于通过一种完全新颖的方法来改善低维系统的光学/电气性能,该方法通常是基于通常负责固体中能量耗散的机制(声子散射 - 声子是晶格振动的量子)。与目前针对更直接但通常是边际材料优化的努力不同,我们将设计材料运行的电磁环境。确实,我们最近证明,可以使用适当定制的Terahertz纳米质共振剂来修饰纳米材料的固有声子响应。这可以实现,而无需任何直接的terahertz照明,只能利用此类谐振器中与Terahertz“量子真空波动”相关的高“真空”电场。拟议的研究将介绍新型纳米光体架构的设计和实现,以选择性操纵降低量的光子响应的选择性操纵。长期到长期中要使用的设备将包括先进的LED和纳米电路,以及“芯片” Terahertz传感器和Terahertz数据通信系统。在短期内,将在四个相互关联的研究轨道周围进行活动,从而利用声子共振重塑以开发:(i)不需要复杂的光学泵站进行操作的Terahertz辐射的微型来源; (ii)增强纳米级Terahertz非线性的方案;用于增强(III)光学发射(IV)的等离子纳米构造和二维材料中的电荷运输。该计划最终将提供有关Terahertz真空波动设计解决方案何时以及如何在获得高性能系统方面具有竞争优势的一般指南。因此,它可以为发展新的先进技术的发展铺平道路,并与加拿大光子学行业的直接需求保持一致,同时还促进了对高素质人员的培训,以应对现代社会的科学和技术挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Razzari, Luca其他文献
Extremely broadband terahertz generation via pulse compression of an Ytterbium laser amplifier
- DOI:
10.1364/oe.27.032659 - 发表时间:
2019-10-28 - 期刊:
- 影响因子:3.8
- 作者:
Piccoli, Riccardo;Rovere, Andrea;Razzari, Luca - 通讯作者:
Razzari, Luca
Improving nanoscale terahertz field localization by means of sharply tapered resonant nanoantennas
- DOI:
10.1515/nanoph-2019-0459 - 发表时间:
2020-03-01 - 期刊:
- 影响因子:7.5
- 作者:
Aglieri, Vincenzo;Jin, Xin;Razzari, Luca - 通讯作者:
Razzari, Luca
Single-pixel terahertz imaging: a review
- DOI:
10.29026/oea.2020.200012 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:14.1
- 作者:
Zanotto, Luca;Piccoli, Riccardo;Razzari, Luca - 通讯作者:
Razzari, Luca
Extremely large extinction efficiency and field enhancement in terahertz resonant dipole nanoantennas
- DOI:
10.1364/oe.19.026088 - 发表时间:
2011-12-19 - 期刊:
- 影响因子:3.8
- 作者:
Razzari, Luca;Toma, Andrea;Di Fabrizio, Enzo - 通讯作者:
Di Fabrizio, Enzo
Terahertz Dipole Nanoantenna Arrays: Resonance Characteristics.
- DOI:
10.1007/s11468-012-9439-0 - 发表时间:
2013-03 - 期刊:
- 影响因子:3
- 作者:
Razzari, Luca;Toma, Andrea;Clerici, Matteo;Shalaby, Mostafa;Das, Gobind;Liberale, Carlo;Chirumamilla, Manohar;Zaccaria, Remo Proietti;De Angelis, Francesco;Peccianti, Marco;Morandotti, Roberto;Di Fabrizio, Enzo - 通讯作者:
Di Fabrizio, Enzo
Razzari, Luca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Razzari, Luca', 18)}}的其他基金
Taming Terahertz Vacuum Fluctuations for a Novel Generation of Nanodevices
抑制太赫兹真空波动以实现新一代纳米器件
- 批准号:
RGPIN-2019-06138 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Intense visible white-light pulse generation in gas-filled hollow-core fibers pumped by Yb-lasers for multi-color time-resolved spectroscopy
由 Yb 激光器泵浦的充气空心光纤中产生强烈的可见白光脉冲,用于多色时间分辨光谱
- 批准号:
569169-2021 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Alliance Grants
Taming Terahertz Vacuum Fluctuations for a Novel Generation of Nanodevices
抑制太赫兹真空波动以实现新一代纳米器件
- 批准号:
RGPIN-2019-06138 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Hollow core fiber compression scheme for high-average/peak-power ytterbium laser technology and its application to secondary sources of long-wavelength radiation
高平均/峰值功率镱激光技术的空心光纤压缩方案及其在长波长辐射二次源中的应用
- 批准号:
529329-2018 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Collaborative Research and Development Grants
System for the generation of tunable ultrafast optical pulses (Market Study)
用于产生可调谐超快光脉冲的系统(市场研究)
- 批准号:
560494-2021 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Idea to Innovation
Taming Terahertz Vacuum Fluctuations for a Novel Generation of Nanodevices
抑制太赫兹真空波动以实现新一代纳米器件
- 批准号:
RGPIN-2019-06138 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Hollow core fiber compression scheme for high-average/peak-power ytterbium laser technology and its application to secondary sources of long-wavelength radiation
高平均/峰值功率镱激光技术的空心光纤压缩方案及其在长波长辐射二次源中的应用
- 批准号:
529329-2018 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Collaborative Research and Development Grants
Development of a Novel Charge Accumulation THz Spectroscopy System Operating in an Inert Atmosphere
开发在惰性气氛中运行的新型电荷积累太赫兹光谱系统
- 批准号:
RTI-2020-00741 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Research Tools and Instruments
Plasmonic metasurfaces for high-dimensional quantum information processing
用于高维量子信息处理的等离子体超表面
- 批准号:
506518-2017 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Strategic Projects - Group
Nanostructures for Assisted Spectroscopy and Nonlinear Optics
用于辅助光谱学和非线性光学的纳米结构
- 批准号:
435948-2013 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
量子限制杂质原子作为单电子量子点对Terahertz远红外发光器的应用
- 批准号:60776044
- 批准年份:2007
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Taming Terahertz Vacuum Fluctuations for a Novel Generation of Nanodevices
抑制太赫兹真空波动以实现新一代纳米器件
- 批准号:
RGPIN-2019-06138 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Taming Terahertz Vacuum Fluctuations for a Novel Generation of Nanodevices
抑制太赫兹真空波动以实现新一代纳米器件
- 批准号:
RGPIN-2019-06138 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Creation of free-space electron-traveling photodiodes and realization of terahertz-wave pulsed beams
自由空间电子行进光电二极管的创建和太赫兹波脉冲束的实现
- 批准号:
20H00253 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Taming Terahertz Vacuum Fluctuations for a Novel Generation of Nanodevices
抑制太赫兹真空波动以实现新一代纳米器件
- 批准号:
RGPIN-2019-06138 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Development of on-chip Nano-Vacuum Electron Based High Power Terahertz Sources for Industrial and Imaging Applications
开发用于工业和成像应用的片上纳米真空电子基高功率太赫兹源
- 批准号:
490338-2016 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral