Performance Management of Enterprise Application Systems in the Cloud Era
云时代企业应用系统的性能管理
基本信息
- 批准号:RGPIN-2018-04224
- 负责人:
- 金额:$ 4.95万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Enterprise applications, e.g., Web and interactive big data services, need to respond quickly to user transactions. Consequently, system operators need techniques that ensure applications meet their response time objectives while utilizing computing resources in a cost-effective way. Several factors necessitate new performance management techniques for such systems. For example, these applications are being increasingly deployed on public cloud platforms, which can suffer from unpredictable performance degradations due to contention for shared cloud resources. Novel approaches are needed to manage system performance in the presence of such platform induced interference. Furthermore, these systems typically experience bursty workloads, which can degrade performance in complex ways. This motivates new techniques that can predict and mitigate the impact of burstiness. This program seeks to address such challenges. We will investigate new techniques that allow an operator to accurately predict the cloud resources needed by a system to satisfy a desired response time target while handling a given workload. Techniques based on queuing analysis typically require an expert to manually author a system model. Also, accuracy can be impacted when predicting for bursty workloads. Machine learning (ML) techniques promise a data-driven alternative to queuing analysis. However, existing work does not provide clear intuition on tasks that can have a big impact on accuracy such as ML technique selection, featurization, and training data selection. My program will address this knowledge gap and realize automated prediction techniques that do not burden an operator with such tasks. We will also explore runtime techniques to mitigate the impact of burstiness and interference. Existing work has not focused on handling the adverse impact of service demand burstiness, i.e., user transaction patterns that cause sustained periods of high or low utilizations at system resources. Our initial work suggests that such burstiness can be tamed using fewer resources by intelligently reordering incoming transactions. We will build on this insight to realize new runtime scheduling techniques. As part of this theme, we will also exploit our ongoing work on interference detection to automatically scale cloud resource instances , e.g., containers, in response to interference. Existing approaches do not consider how individual transaction types get impacted by interference at a given instance. We will build models that can use such fine-grained information to intelligently distribute transactions to instances such that interference is mitigated using minimum instances.This program will expand the state of the art in data-driven performance prediction and management research. Canadian organizations can exploit the research to reduce costs related to poor performance and resource over-provisioning.
企业应用程序,例如Web和交互式大数据服务,需要快速响应用户事务。因此,系统操作员需要确保应用程序满足其响应时间目标,同时以经济高效的方式利用计算资源的技术。有几个因素需要针对此类系统采用新的性能管理技术。例如,这些应用程序越来越多地部署在公共云平台上,由于共享云资源的争用,公共云平台可能会遭受不可预测的性能下降。在存在此类平台引起的干扰的情况下,需要新的方法来管理系统性能。此外,这些系统通常会经历突发性工作负载,这可能会以复杂的方式降低性能。这催生了可以预测和减轻突发性影响的新技术。该计划旨在解决此类挑战。我们将研究新技术,使操作员能够准确预测系统在处理给定工作负载时满足所需响应时间目标所需的云资源。基于排队分析的技术通常需要专家手动创建系统模型。此外,在预测突发工作负载时,准确性也会受到影响。机器学习 (ML) 技术有望提供一种数据驱动的排队分析替代方案。然而,现有的工作并没有对可能对准确性产生重大影响的任务提供清晰的直觉,例如 ML 技术选择、特征化和训练数据选择。我的程序将解决这一知识差距并实现自动预测技术,不会给操作员带来此类任务的负担。我们还将探索运行时技术来减轻突发性和干扰的影响。现有的工作并未集中于处理服务需求突发性的不利影响,即导致系统资源持续高或低利用率的用户事务模式。我们的初步工作表明,可以通过智能地重新排序传入事务,使用更少的资源来抑制这种突发性。我们将基于这一见解来实现新的运行时调度技术。作为该主题的一部分,我们还将利用我们正在进行的干扰检测工作来自动扩展云资源实例(例如容器)以响应干扰。现有方法没有考虑单个交易类型如何受到给定实例的干扰的影响。我们将构建可以使用此类细粒度信息智能地将事务分配到实例的模型,以便使用最少的实例来减轻干扰。该计划将扩展数据驱动的性能预测和管理研究的最新技术。加拿大组织可以利用这项研究来降低与绩效不佳和资源过度配置相关的成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krishnamurthy, Diwakar其他文献
Krishnamurthy, Diwakar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krishnamurthy, Diwakar', 18)}}的其他基金
AR/MR software for improving communication and education outcomes of minimally verbal autistic people
AR/MR 软件可改善语言能力极低的自闭症患者的沟通和教育成果
- 批准号:
571326-2021 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Alliance Grants
Performance Management of Enterprise Application Systems in the Cloud Era
云时代企业应用系统的性能管理
- 批准号:
RGPIN-2018-04224 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Performance Management of Enterprise Application Systems in the Cloud Era
云时代企业应用系统的性能管理
- 批准号:
RGPIN-2018-04224 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Scalable Fog and Cloud Computing for Industrial IoT
适用于工业物联网的可扩展雾和云计算
- 批准号:
539276-2019 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Engage Grants Program
Performance Management of Enterprise Application Systems in the Cloud Era
云时代企业应用系统的性能管理
- 批准号:
RGPIN-2018-04224 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Performance Management of Enterprise Application Systems in the Cloud Era
云时代企业应用系统的性能管理
- 批准号:
RGPIN-2018-04224 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Performance evaluation and management of enterprise application systems
企业应用系统性能评估与管理
- 批准号:
311746-2013 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Performance management tools for big data applications
大数据应用的性能管理工具
- 批准号:
513200-2017 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Collaborative Research and Development Grants
Predictive analytics for Smarttarget: Proactive performance anomaly detection techniques for cloud-based Web services
Smarttarget 的预测分析:基于云的 Web 服务的主动性能异常检测技术
- 批准号:
514610-2017 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Engage Grants Program
Performance evaluation and management of enterprise application systems
企业应用系统性能评估与管理
- 批准号:
311746-2013 - 财政年份:2016
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
投资者关系管理的数字化转型与企业价值加成效应研究:机理与实证
- 批准号:72302075
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
企业主动舆情管理与劳动力投资:基于自媒体隐性关联的视角
- 批准号:72302195
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
农产品出口区域化管理对企业和农户的行为决策及经济绩效影响研究
- 批准号:72373067
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
供需协同下大数据驱动的新能源企业供能设施网络运营管理
- 批准号:72272014
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
不确定环境下服务型制造企业对供应商的关系管理研究:互补与依赖的视角
- 批准号:72274174
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
CANCER TRIALS SUPPORT UNIT (CTSU) CORE SUPPORT SERVICES & THE CTSU ENTERPRISE OF SYSTEMS
癌症试验支持单位 (CTSU) 核心支持服务
- 批准号:
10806115 - 财政年份:2022
- 资助金额:
$ 4.95万 - 项目类别:
PFI-TT: Artificial Intelligence System for Enterprise Performance Management that Integrates Causal Analytics and Human Expertise
PFI-TT:集成因果分析和人类专业知识的企业绩效管理人工智能系统
- 批准号:
2141124 - 财政年份:2022
- 资助金额:
$ 4.95万 - 项目类别:
Standard Grant
I-Corps: Knowledge Graph Embeddings-based Explainable Artificial Intelligence for Enterprise Performance Management
I-Corps:用于企业绩效管理的基于知识图嵌入的可解释人工智能
- 批准号:
2102803 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Standard Grant
Performance Management of Enterprise Application Systems in the Cloud Era
云时代企业应用系统的性能管理
- 批准号:
RGPIN-2018-04224 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Performance Management of Enterprise Application Systems in the Cloud Era
云时代企业应用系统的性能管理
- 批准号:
RGPIN-2018-04224 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual