Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
基本信息
- 批准号:RGPIN-2021-02391
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many fundamental issues in robotics and computer vision are questions of high-dimensional geometry. For example, positions of a simple robotic arm might be specified by giving the coordinates of each of its 3 joints, for 9 coordinates in total. The coordinates of achievable positions, however, must satisfy certain relations, forced for example by the robot's arm segments being of fixed length. Hence, we might find that the space of achievable arm configurations is a complicated 7-dimensional object sitting inside a 9-coordinate space. Geometric properties of this robotic "phase space" tell us important features of our robot. For example, if the space is disconnected, we might only be able to move the arm from one position to another position by unscrewing the components and reassembling them in the new configuration - not what we want from robots! However, it is difficult to reason visually about a 7-dimensional space (and in a more realistic robot, the dimension would be much higher still), so we rely heavily on algebraic tools such as cohomology to calculate aspects of the geometry. These algebraic calculations can then be interpreted as useful geometric information about robot design. Unfortunately, these algebraic calculations are themselves very difficult. We therefore look for discrete models of the algebraic objects involved. For example, on some particularly important spaces such as Grassmannians, we can usefully label cohomology classes by certain finite grids of boxes and compute products of these cohomology classes by counting the number of ways to fill the grids with whole numbers satisfying some simple rules. One major goal of this research is to extend these discrete models to broader classes of important spaces. While cohomology rings make it feasible to compute important information about complicated spaces, they also neglect other information that might be needed. Hence, another major goal is to develop discrete models for richer analogues of cohomology that compute more of the geometry but are correspondingly more difficult to work with. "Elliptic" cohomology, in particular, is currently extremely hard to understand for almost any space, although it is believed that a better understanding would lead to major advances in string theory and other aspects of contemporary physics. By developing new discrete models, the proposed research program will make it easier to compute geometric properties of important spaces. The impacts of this program will be felt in theoretical and practical advances in each of algebra, geometry, and discrete mathematics, as these fields cross-fertilize each other. With training in discrete mathematics and computer algebra, HQP will be well-prepared for careers in academia, data science, and computer vision.
机器人学和计算机视觉中的许多基本问题都是高维几何问题,例如,可以通过给出其 3 个关节中每个关节的坐标来指定总共 9 个可实现位置的坐标。然而,必须满足某些关系,例如由于机器人的手臂部分具有固定长度,因此,我们可能会发现可实现的手臂配置的空间是位于 9 坐标空间内的复杂的 7 维对象。这个机器人“相空间”的几何特性告诉我们机器人的重要特征,例如,如果空间是断开的,我们可能只能通过拧下组件并将它们重新组装到空间中来将手臂从一个位置移动到另一个位置。新的配置 - 不是我们想要的机器人!但是,很难从视觉上推理 7 维空间(在更现实的机器人中,维度会更高),因此我们严重依赖代数工具,例如上同调于然后,这些代数计算可以解释为有关机器人设计的有用几何信息,因此,我们寻找所涉及的代数对象的离散模型。在诸如格拉斯曼空间之类的空间中,我们可以通过某些有限的盒子网格来有效地标记上同调类,并通过计算用满足一些简单规则的整数填充网格的方法的数量来计算这些上同调类的乘积。这项研究的目的是将这些离散模型扩展到更广泛的重要空间类别,虽然上同调环使得计算复杂空间的重要信息成为可能,但它们也忽略了可能需要的其他信息,因此,另一个主要目标是开发离散模型。对于更丰富的上同调类似物,它们计算更多的几何,但相应地更难以使用“椭圆”上同调,特别是,目前对于几乎任何空间都极难理解,尽管人们相信更好的理解会导致。弦理论的重大进展通过开发新的离散模型,所提出的研究计划将使计算重要空间的几何性质变得更加容易,该计划的影响将体现在代数、几何和离散领域的理论和实践进展中。通过离散数学和计算机代数方面的培训,HQP 将为学术界、数据科学和计算机视觉领域的职业生涯做好充分准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pechenik, Oliver其他文献
Crystal structures for symmetric Grothendieck polynomials
对称 Grothendieck 多项式的晶体结构
- DOI:
- 发表时间:
2020-01 - 期刊:
- 影响因子:0
- 作者:
Monical, Cara;Pechenik, Oliver;Scrimshaw, Travis - 通讯作者:
Scrimshaw, Travis
Orbits of plane partitions of exceptional Lie type
特殊李型平面分区的轨道
- DOI:
10.1016/j.ejc.2018.07.007 - 发表时间:
2018-12 - 期刊:
- 影响因子:1
- 作者:
Mandel, Holly;Pechenik, Oliver - 通讯作者:
Pechenik, Oliver
Doppelgängers: Bijections of Plane Partitions
分身:平面分区的双射
- DOI:
10.1093/imrn/rny018 - 发表时间:
2018-03 - 期刊:
- 影响因子:1
- 作者:
Hamaker, Zachary;Patrias, Rebecca;Pechenik, Oliver;Williams, Nathan - 通讯作者:
Williams, Nathan
Derivatives of Schubert polynomials and proof of a determinant conjecture of Stanley
舒伯特多项式的导数和斯坦利行列式猜想的证明
- DOI:
10.5802/alco.93 - 发表时间:
2020-01 - 期刊:
- 影响因子:0
- 作者:
Hamaker, Zachary;Pechenik, Oliver;Speyer, David E;Weigandt, Anna - 通讯作者:
Weigandt, Anna
K -theoretic polynomials
K 理论多项式
- DOI:
- 发表时间:
2020-01 - 期刊:
- 影响因子:0
- 作者:
Monical, Cara;Pechenik, Oliver;Searles, Dominic - 通讯作者:
Searles, Dominic
Pechenik, Oliver的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pechenik, Oliver', 18)}}的其他基金
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
- 批准号:
RGPIN-2021-02391 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
- 批准号:
RGPIN-2021-02391 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
- 批准号:
DGECR-2021-00010 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Launch Supplement
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
- 批准号:
DGECR-2021-00010 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
跨型号电池差异对其外特性的作用机制及普适性建模与健康度评估研究
- 批准号:52307233
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Petri网和DSM的型号产品协同设计过程和数据世系建模及分析方法研究
- 批准号:61170001
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
相似海外基金
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
- 批准号:
RGPIN-2021-02391 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
- 批准号:
RGPIN-2021-02391 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
- 批准号:
DGECR-2021-00010 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Launch Supplement
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
- 批准号:
DGECR-2021-00010 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Launch Supplement
Algebraic constructions for combinatorial designs and their applications to combinatorial testing
组合设计的代数构造及其在组合测试中的应用
- 批准号:
19K14585 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists