Shining a new light on molecular biexcitonic processes: novel molecules and DNA origami
揭示分子双激子过程的新亮点:新型分子和 DNA 折纸
基本信息
- 批准号:RGPIN-2021-03865
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the fight against climate change, renewable energy is our strongest ally. Solar energy is an abundant natural resource, especially in Saskatchewan, where we receive an average of 2,264 hours of sunshine per year. A standard industrially-produced solar cell achieves a light-to-electrical output efficiency of only 18-22%, and so much of the light is not absorbed or absorbed only to be dissipated as heat. New materials that rely on biexcitonic energy-transfer processes have the potential to revolutionize the efficiency with which light is captured and transported in solar-harvesting devices. This proposal addresses this transformative opportunity. We will develop a new class of materials, based on azulenes, that maximize solar-radiation capture, as photons from the entire solar spectrum can trigger biexcitonic processes. Excitations, or excitons, created by low-energy photons can combine to produce higher-energy excitons, while each high-energy exciton can split to produce two lower-energy excitons. This singlet-fission (SF) process can increase power-conversion efficiencies as higher electrical currents result for each photon absorbed. However, few molecules fulfill the strict energy-level requirements, and interact with their neighbouring molecules with the appropriate strength, necessary for SF to occur. Our novel approach is to develop a totally new class of azulene-derived molecules in which efficient SF occurs from unusually-high energy levels. We will visualize and quantify the myriad energy-transfer pathways involved in their biexcitonic processes using ultrafast optical spectroscopy techniques. We will also control interactions between molecules by binding them to nano-scale DNA-origami structures, thus constraining their relative positions and precisely tuning their interactions. Through this dual approach, my research group will markedly extend our knowledge of molecules known to exhibit efficient biexcitonic processes and will develop robust, high-performance materials based upon these processes. This research will drastically improve the efficiency of light-harvesting devices and spawn new technologies, such as new medical-imaging modalities, DNA-based drug delivery vehicles, and ultrasensitive environmental detectors. As this approach is based on azulenes, a natural extension is to detect azulene-like defects in graphene, which are a stumbling block in bringing to fruition many graphene-based innovations sought by the electronics industry. The results will help to position Canada as an influential force in renewable energy technologies, and the highly-qualified personnel working on this research will enter the Canadian labour market with transferable next-generation skills in science and technology. Through supportive and proactive mentorship, my graduates will carry forward values of equity, diversity, and inclusivity. Their training will empower them with the knowledge and tools to continue innovating towards a bright future.
在应对气候变化的斗争中,可再生能源是我们最强大的盟友。太阳能是一种丰富的自然资源,特别是在萨斯喀彻温省,每年平均日照时间为 2,264 小时。标准工业生产的太阳能电池的光电输出效率仅为18-22%,并且大量的光没有被吸收或被吸收,只是以热量的形式散发掉。依赖双激子能量转移过程的新材料有可能彻底改变太阳能收集设备中捕获和传输光的效率。该提案解决了这一变革机遇。我们将开发一种基于甘菊环的新型材料,最大限度地捕获太阳辐射,因为来自整个太阳光谱的光子可以触发双激子过程。由低能光子产生的激发或激子可以结合产生更高能量的激子,而每个高能激子可以分裂产生两个较低能量的激子。这种单线态裂变 (SF) 过程可以提高能量转换效率,因为每个吸收的光子都会产生更高的电流。然而,很少有分子能够满足严格的能级要求,并以适当的强度与相邻分子相互作用,这是SF发生所必需的。我们的新颖方法是开发一类全新的甘菊衍生分子,其中高效的 SF 从异常高的能级产生。我们将使用超快光谱技术对双激子过程中涉及的无数能量转移途径进行可视化和量化。我们还将通过将分子与纳米级 DNA 折纸结构结合来控制分子之间的相互作用,从而限制它们的相对位置并精确调整它们的相互作用。通过这种双重方法,我的研究小组将显着扩展我们对已知表现出高效双激子过程的分子的了解,并将基于这些过程开发坚固的高性能材料。这项研究将大幅提高光采集设备的效率并催生新技术,例如新的医学成像模式、基于 DNA 的药物输送工具和超灵敏环境探测器。由于这种方法基于甘菊环,自然的扩展是检测石墨烯中的类似甘菊环的缺陷,这是实现电子行业寻求的许多基于石墨烯的创新的绊脚石。研究结果将有助于使加拿大成为可再生能源技术领域的一支有影响力的力量,从事这项研究的高素质人员将进入加拿大劳动力市场,并拥有可转移的下一代科学技术技能。通过支持性和积极主动的指导,我的毕业生将弘扬公平、多样性和包容性的价值观。他们的培训将为他们提供知识和工具,帮助他们继续创新,迈向光明的未来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stevens, Amy其他文献
The use of virtual patients to teach medical students history taking and communication skills
- DOI:
10.1016/j.amjsurg.2006.03.002 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:3
- 作者:
Stevens, Amy;Hernandez, Jonathan;Lind, D. Scott - 通讯作者:
Lind, D. Scott
Convergent Validity of the Strength-Based Behavioral and Emotional Rating Scale with Youth in a Residential Setting
- DOI:
10.1007/s11414-013-9389-0 - 发表时间:
2015-07-01 - 期刊:
- 影响因子:1.9
- 作者:
Hurley, Kristin Duppong;Lambert, Matthew C.;Stevens, Amy - 通讯作者:
Stevens, Amy
Quality and equity: a shared agenda for universal health coverage.
- DOI:
10.1136/bmjgh-2023-012561 - 发表时间:
2023-07 - 期刊:
- 影响因子:8.1
- 作者:
Stevens, Amy;Neilson, Matthew;Rasanathan, Kumanan;Syed, Shamsuzzoha Babar;Koller, Theadora Swift - 通讯作者:
Koller, Theadora Swift
Selective inhibition of the K(ir)2 family of inward rectifier potassium channels by a small molecule probe: the discovery, SAR, and pharmacological characterization of ML133.
- DOI:
10.1021/cb200146a - 发表时间:
2011-08-19 - 期刊:
- 影响因子:4
- 作者:
Wang, Hao-Ran;Wu, Meng;Yu, Haibo;Long, Shunyou;Stevens, Amy;Engers, Darren W.;Sackin, Henry;Daniels, J. Scott;Dawson, Eric S.;Hopkins, Corey R.;Lindsley, Craig W.;Li, Min;McManus, Owen B. - 通讯作者:
McManus, Owen B.
Stevens, Amy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stevens, Amy', 18)}}的其他基金
Shining a new light on molecular biexcitonic processes: novel molecules and DNA origami
揭示分子双激子过程的新亮点:新型分子和 DNA 折纸
- 批准号:
RGPIN-2021-03865 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Shining a new light on molecular biexcitonic processes: novel molecules and DNA origami
揭示分子双激子过程的新亮点:新型分子和 DNA 折纸
- 批准号:
DGECR-2021-00436 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
光自敏化驱动芳香类新污染物降解新途径的第一性原理研究
- 批准号:22376220
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
一种新的三重基序蛋白TRIM70在蚕沙提取物叶绿酸e4光动力治疗膀胱癌中的作用及机制研究
- 批准号:82374080
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
光超联合驱动下双分子修饰氮缺陷氮化碳降解新烟碱类农药的机理研究
- 批准号:52270156
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
用新的多尺度激发态动力学方法探索荧光蛋白的光损伤机制
- 批准号:22173060
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
新的光温分子节点BTR9调控植物生长发育的分子机制研究
- 批准号:32170247
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Shining a new light on mining: developing spectral metrics for process control and decision tools in mining exploration and operation.
为采矿业带来新的曙光:为采矿勘探和运营中的过程控制和决策工具开发光谱指标。
- 批准号:
RGPIN-2020-03887 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
新規光ファイバ焼灼医療機器の開発~経皮的針生検の合併症低減を目指して~
开发新型光纤消融医疗器械 - 旨在减少经皮穿刺活检的并发症 -
- 批准号:
22K12865 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shining a New Light on Photoredox Catalysis and Small Molecule Activation
揭示光氧化还原催化和小分子活化的新亮点
- 批准号:
EP/V056069/1 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Fellowship
Shining a new light on molecular biexcitonic processes: novel molecules and DNA origami
揭示分子双激子过程的新亮点:新型分子和 DNA 折纸
- 批准号:
RGPIN-2021-03865 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Shining a new light on mining: developing spectral metrics for process control and decision tools in mining exploration and operation.
为采矿业带来新的曙光:为采矿勘探和运营中的过程控制和决策工具开发光谱指标。
- 批准号:
RGPIN-2020-03887 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual