A hybrid approach to quantum dynamics based on the integration of quantum calculations and machine learning

基于量子计算和机器学习集成的量子动力学混合方法

基本信息

  • 批准号:
    RGPIN-2020-04969
  • 负责人:
  • 金额:
    $ 4.66万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Quantum mechanics provides the most accurate description of molecular dynamics that determine microscopic chemical reactions and the structure and functionality of quantum materials. However, the fully quantum description of complex molecular systems is difficult. The present work aims to capitalize on recent developments in quantum dynamics theory and in machine learning in order to develop new approaches to quantum dynamics. The goal is to develop quantum approaches that will (1) require less computational resources than currently established approaches; (2) produce not only quantum observables but also the uncertainties of these observables stemming from limitations imposed by the difficulty of solving the Schrodinger equation; (3) combine quantum theory of molecular dynamics with experimental observations in order to produce improved descriptions of microscopic molecular interactions; (4) make accurate predictions of quantum observables for systems and experimental conditions that are currently out of reach of rigorous quantum theory. These goals will be achieved by integrating Bayesian machine learning (ML) into the methodology of quantum calculations. This will produce a flexible framework for quantum dynamics calculations. The core of this framework will be the nuclear Schrodinger equation. However, the inputs into the Schrodinger equation will be designed by ML models and the results of the quantum calculations will be processed by another ML model. This will dramatically reduce the number of quantum calculations required for accurate predictions of dynamical properties. Moreover, this will allow for new, currently unfeasible, problems to be solved.   Specifically, we will aim to address the following major challenges in quantum molecular dynamics: (i) The inverse scattering problem aiming to obtain accurate potentials for microscopic molecular interactions from experimental observables. (ii) System-agnostic construction of global potential energy surfaces for very high-dimensional systems (up to 100 dimensions).    (iii) Improving the accuracy of quantum predictions based on approximate dynamical approaches by combining the machine learning models that interpolate and generalize approximate results with machine learning models that infer the difference between the approximate results and rigorous or experimental results. (iv) Understand how to use emerging quantum computing devices for applications in molecular dynamics.  Our work will provide general tools to make quantum predictions for bigger systems and with better accuracy than currently feasible. This could be a key advance for numerous research fields, ranging from drug design, to catalysis, to chemical kinetics. Our work will link emerging quantum computing technologies and molecular dynamics, paving a way for a new application for quantum technologies. This will contribute to maintaining Canada's leadership position in practical quantum computing industry.
量子力学提供了确定微观化学反应以及量子材料的结构和功能的分子动力学的最准确描述。但是,很难对复杂分子系统的完全量子描述。目前的工作旨在利用量子动力学理论和机器学习的最新发展,以开发新的量子动力学方法。目的是开发(1)所需的量子方法比当前建立的方法所需的计算资源少; (2)不仅产生量子可观察到的东西,还产生这些观察到的不确定性,这是由于解决schrodinger方程的困难所施加的局限性所引起的; (3)将分子动力学的量子理论与实验观测相结合,以改善微观分子相互作用的描述; (4)对当前无法实现严格量子理论的系统和实验条件的量子可观察物进行准确的预测。这些目标将通过将贝叶斯机器学习(ML)整合到量子计算方法中来实现。这将产生一个灵活的框架来计算量子动力学。该框架的核心将是核Schrodinger方程。但是,将输入到Schrodinger方程式中,将由ML模型设计,量子计算的结果将由另一个ML模型处理。这将大大减少精确预测动态特性所需的量子计算数量。此外,这将允许解决新的,目前不可行的问题。具体而言,我们将旨在应对量子分子动力学的以下主要挑战:(i)旨在从实验性观察物中获得微观分子相互作用的准确潜力的反向散射问题。 (ii)针对非常高维系统的全球势能表面的系统不可屈服的构建(多达100个维度)。 (iii)通过结合机器学习模型与机器学习模型与机器学习模型相结合,从而提高基于近似动态方法的量子预测的准确性,从而推断近似结果与严格或实验结果之间的差异。 (iv)了解如何将新兴量子计算设备用于分子动力学中的应用。我们的工作将提供一般的工具,以对更大的系统进行量子预测,并且具有比目前可行的更好的准确性。对于众多研究领域,从药物设计,催化到化学动力学,这可能是一个重要的进步。我们的工作将链接新兴的量子计算技术和分子动力学,为新的量子技术应用铺平了一种方法。这将有助于维持加拿大在实践量子计算行业中的领导地位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Krems, Roman其他文献

Physics and Chemistry of Cold Molecules
  • DOI:
    10.1039/c1cp90157e
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Dulieu, Olivier;Krems, Roman;Willitsch, Stefan
  • 通讯作者:
    Willitsch, Stefan

Krems, Roman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Krems, Roman', 18)}}的其他基金

A hybrid approach to quantum dynamics based on the integration of quantum calculations and machine learning
基于量子计算和机器学习集成的量子动力学混合方法
  • 批准号:
    RGPIN-2020-04969
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
A hybrid approach to quantum dynamics based on the integration of quantum calculations and machine learning
基于量子计算和机器学习集成的量子动力学混合方法
  • 批准号:
    RGPIN-2020-04969
  • 财政年份:
    2020
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum dynamics of two-body, few-body and many-body molecular systems at low temperatures
低温下二体、少体和多体分子系统的量子动力学
  • 批准号:
    RGPIN-2014-06419
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum dynamics of two-body, few-body and many-body molecular systems at low temperatures
低温下二体、少体和多体分子系统的量子动力学
  • 批准号:
    RGPIN-2014-06419
  • 财政年份:
    2018
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum dynamics of two-body, few-body and many-body molecular systems at low temperatures
低温下二体、少体和多体分子系统的量子动力学
  • 批准号:
    RGPIN-2014-06419
  • 财政年份:
    2017
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Searching for quantum speedup in quantum annealers
寻找量子退火器中的量子加速
  • 批准号:
    498907-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Engage Grants Program
Quantum dynamics of two-body, few-body and many-body molecular systems at low temperatures
低温下二体、少体和多体分子系统的量子动力学
  • 批准号:
    RGPIN-2014-06419
  • 财政年份:
    2016
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum dynamics of two-body, few-body and many-body molecular systems at low temperatures
低温下二体、少体和多体分子系统的量子动力学
  • 批准号:
    RGPIN-2014-06419
  • 财政年份:
    2015
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum dynamics of two-body, few-body and many-body molecular systems at low temperatures
低温下二体、少体和多体分子系统的量子动力学
  • 批准号:
    RGPIN-2014-06419
  • 财政年份:
    2014
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Cold controlled chemistry
冷控化学
  • 批准号:
    327529-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

赴意大利参加基于量子蒙特卡洛方法处理描述物质新奇态问题研讨会
  • 批准号:
    12381240135
  • 批准年份:
    2023
  • 资助金额:
    2 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于量子化学计算构建的荧光传感器阵列对西红花快速鉴定新方法的研究
  • 批准号:
    82374000
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
  • 批准号:
    52307021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于机器学习的容错变分量子过程层析方法研究
  • 批准号:
    62301572
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
块相关量子计算化学方法及应用
  • 批准号:
    22303022
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Continuing Grant
断熱量子磁束回路を用いて複数量子ビット位相情報を読み出す方法研究
利用绝热量子通量电路读出多量子位相位信息的研究
  • 批准号:
    24K17320
  • 财政年份:
    2024
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The materials approach to quantum spacetime
量子时空的材料方法
  • 批准号:
    MR/X034453/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Fellowship
Operational Quantum Mereology: an Information Scrambling Approach
操作量子分体学:一种信息置乱方法
  • 批准号:
    2310227
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Standard Grant
粒子線治療室内の二次中性子線量の不確かさ評価方法の開発
粒子束治疗室二次中子剂量不确定度评定方法的建立
  • 批准号:
    23K14880
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了