Data-Driven Process Systems Optimization under Uncertain Environment
不确定环境下数据驱动的流程系统优化
基本信息
- 批准号:RGPIN-2019-04584
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For today's process industries, a solid foundation in data acquisition and storage has been developed based on the established process control and information technologies. While huge volumes of data are generated through daily operations, process industries are moving towards data-driven decision making. The analysis of operations and business data is used to support process, plant, and enterprise-wide optimization initiatives. To achieve this kind of transition, it requires seamlessly merging data analytics and process control aspects with operational optimization of planning and scheduling. The target is to create added value to the industrial process, increase the agility of processes to react to changes simultaneously focusing on energy efficiency and sustainability. In the past few years, we have made achievements in process operations optimization under uncertainty using the robust optimization and stochastic programming techniques. With a large amount of operational data available, it is possible to improve the process and uncertainty model and make more practical decisions towards systems optimization. In this research program, we plan to combine the fields of process optimization and process data analytics by implementing systematic methods for data-driven optimization under uncertainty. Specifically, we will: 1) investigate the data-driven process and uncertainty modeling with the aid of data analytics; 2) develop approaches for data-driven robust and adaptive optimization of complex process systems; 3) develop software tools to enable the automation of modeling and solution of the data-driven optimization problem. The proposed research will be utilized to optimize systems of systems, from a single process unit to an entire plant site. This will provide significant theoretic and computational support that enables managers, operators, and engineers in the process industry to collaborate and work together using real-time data and analysis in an information-driven environment.
对于当今的流程行业,基于既定的流程控制和信息技术开发了数据采集和存储的坚实基础。尽管通过日常操作产生了大量数据,但过程行业正在朝着数据驱动的决策迈进。运营和业务数据的分析用于支持过程,工厂和企业范围的优化计划。为了实现这种过渡,它需要与计划和调度的操作优化无缝合并数据分析和过程控制方面。目标是为工业过程创造附加价值,提高过程的敏捷性,以对变化的反应同时关注能源效率和可持续性。 在过去的几年中,我们使用强大的优化和随机编程技术在不确定性下优化了过程操作的成就。有了大量的操作数据,可以改善过程和不确定性模型,并为系统优化做出更实际的决策。在该研究计划中,我们计划通过在不确定性下实施系统驱动的优化来结合过程优化和过程数据分析的领域。具体而言,我们将:1)借助数据分析研究数据驱动的过程和不确定性建模; 2)开发用于数据驱动的复杂过程系统的鲁棒和自适应优化的方法; 3)开发软件工具,以实现建模和解决数据驱动的优化问题的自动化。拟议的研究将用于优化从单个过程单元到整个工厂站点的系统系统。这将提供重要的理论和计算支持,使过程行业中的经理,运营商和工程师能够在信息驱动的环境中使用实时数据和分析一起协作和合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li, Zukui其他文献
A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: III. Improving the Quality of Robust Solutions.
- DOI:
10.1021/ie501898n - 发表时间:
2014-08-20 - 期刊:
- 影响因子:4.2
- 作者:
Li, Zukui;Floudas, Christodoulos A. - 通讯作者:
Floudas, Christodoulos A.
A new methodology for the general multiparametric mixed-integer linear programming (MILP) problems
- DOI:
10.1021/ie070148s - 发表时间:
2007-07-18 - 期刊:
- 影响因子:4.2
- 作者:
Li, Zukui;Ierapetritou, Marianthi G. - 通讯作者:
Ierapetritou, Marianthi G.
A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: II. Probabilistic Guarantees on Constraint Satisfaction.
- DOI:
10.1021/ie201651s - 发表时间:
2012 - 期刊:
- 影响因子:4.2
- 作者:
Li, Zukui;Tang, Qiuhua;Floudas, Christodoulos A. - 通讯作者:
Floudas, Christodoulos A.
Robust optimization for process scheduling under uncertainty
- DOI:
10.1021/ie071431u - 发表时间:
2008-06-18 - 期刊:
- 影响因子:4.2
- 作者:
Li, Zukui;Ierapetritou, Marianthi G. - 通讯作者:
Ierapetritou, Marianthi G.
A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization.
- DOI:
10.1021/ie200150p - 发表时间:
2011-09-21 - 期刊:
- 影响因子:4.2
- 作者:
Li, Zukui;Ding, Ran;Floudas, Christodoulos A. - 通讯作者:
Floudas, Christodoulos A.
Li, Zukui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li, Zukui', 18)}}的其他基金
Data-Driven Process Systems Optimization under Uncertain Environment
不确定环境下数据驱动的流程系统优化
- 批准号:
RGPIN-2019-04584 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Robust Real-Time Optimization for Refinery Process Operations
炼油厂工艺操作的稳健实时优化
- 批准号:
555566-2020 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Alliance Grants
Robust Real-Time Optimization for Refinery Process Operations
炼油厂工艺操作的稳健实时优化
- 批准号:
555566-2020 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Alliance Grants
Data-Driven Process Systems Optimization under Uncertain Environment
不确定环境下数据驱动的流程系统优化
- 批准号:
RGPIN-2019-04584 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Pipeline Operations Optimization using Data-Driven Model
使用数据驱动模型优化管道运营
- 批准号:
543444-2019 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Engage Grants Program
Data-Driven Process Systems Optimization under Uncertain Environment
不确定环境下数据驱动的流程系统优化
- 批准号:
RGPIN-2019-04584 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Systematic Management of Uncertainties in Process Operations
流程操作中不确定性的系统管理
- 批准号:
435906-2013 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Systematic Management of Uncertainties in Process Operations
流程操作中不确定性的系统管理
- 批准号:
435906-2013 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Process modeling and control algorithm development for flow metering valve
流量计量阀的过程建模和控制算法开发
- 批准号:
522294-2017 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Engage Grants Program
Systematic Management of Uncertainties in Process Operations
流程操作中不确定性的系统管理
- 批准号:
435906-2013 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
在线光感应数据驱动的微光学成型工艺智能化及过程诊断研究
- 批准号:52375493
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多源异构数据驱动的多工况工业过程复合故障智能诊断及应用
- 批准号:62303258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于数据驱动的叶轮五轴加工过程智能诊断及控制优化
- 批准号:52375412
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
数据与模型融合驱动的旋流器分级过程运行优化控制方法
- 批准号:52304309
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据驱动的石化系统动态过程故障检测与诊断技术研究
- 批准号:62303039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
- 批准号:
10551576 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Targeting PLK1 in RAS mutant chronic myelomonocytic leukemia
RAS 突变型慢性粒单核细胞白血病中的靶向 PLK1
- 批准号:
10656778 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Investigating facilitator-driven, multi-level implementation strategies in Federally Qualified Health Centers to improve provider recommendation and HPV vaccination rates among Latino/a adolescents
调查联邦合格健康中心中促进者驱动的多层次实施策略,以提高拉丁裔/非裔青少年的医疗服务提供者推荐和 HPV 疫苗接种率
- 批准号:
10737168 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Targeting neuronal transport to ameliorate vincristine neurotoxicity
靶向神经元运输以改善长春新碱神经毒性
- 批准号:
10736789 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
TOX-driven CD8 T cell differentiation and dysfunction in tumors
TOX驱动的肿瘤中CD8 T细胞分化和功能障碍
- 批准号:
10586679 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别: