Solar Sailing: Attitude, Orbit, and Shape Control

太阳航行:姿态、轨道和形状控制

基本信息

  • 批准号:
    RGPIN-2020-04037
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Spacecraft exhibit three distinct types of motion. The evolution of their position in space is the subject of orbital dynamics. The evolution of their orientation with respect to some reference, such as the Earth, is described by attitude dynamics. Larger spacecraft can be  quite flexible and one is concerned with their structural dynamics which describes vibrational and wrinkling types of behaviour. Controlling these three types of motion typically requires feedback control systems which use sensors to monitor the spacecraft motion and then correct errors using appropriate actuators which produce forces and torques. Forces are required to control orbits whereas torques are needed to control orientation (also called attitude). In some problems, the spacecraft's attitude can have a large effect on its orbit. An interesting example is a solar sail, which is a large, flimsy gossamer structure which acts a mirror to reflect the solar radiation acting upon it. This produces a reaction force on the sail. Controlling solar sails is a challenging application because the orbital dynamics, attitude dynamics, and structural dynamics are highly coupled. The orbital path and the orientation of the sail are coupled because the forces stemming from radiation pressure act in a direction that depends on the sail attitude. This is analogous to the motion of a sailboat moving on the surface of a lake in wind. A useful destination for a solar sail is a point between the Sun and the Earth where the solar sail can be used to detect solar storms and communicate a warning to the Earth before the storm arrives. Another useful point to place a solar sail is in a "pole-sitter" position whereby the sail does not orbit the Earth but rather sits above the North Pole and moves with the Earth as it moves around the Sun. In order to use these special orbits, one needs to develop steering strategies to achieve them. We would like to determine attitude motions to reach these places in the shortest time possible. Given the solution of the previous problem, we would like to determine control approaches to follow a prescribed attitude motion. Two actuation approaches will be studied: the use of tip vanes (little miniature solar sails gimballed to the corners of the main sail) and the use of balance masses. The key problem that needs to be solved initially is the determination of the actuator motion required to provide the control torques required by the control system. Having handled the coupled attitude-orbit control problem, the next problem in the hierarchy to be studied brings shape control into play. There are two subproblems to be considered: vibration suppression and wrinkle prevention. Both are complicated by the lack of distributed actuation and sensing and the fact that the actuation is physically noncollocated with the typical sensing which one assumes would include the attitude and angular rate information measured at the centre of the sail.
航天器表现出三种不同类型的运动,它们在空间中的位置的演变是轨道动力学的主题,它们相对于某些参照物(例如地球)的演变可以通过姿态动力学来描述。一是涉及其结构动力学,它描述了振动和起皱类型的行为,控制这三种类型的运动通常需要反馈控制系统,该系统使用传感器来监测航天器的运动,然后使用产生力和扭矩的适当执行器来纠正错误。需要控制轨道,而需要扭矩来控制方向(也称为姿态)。在某些问题中,航天器的姿态对其轨道有很大影响。一个有趣的例子是太阳帆,它是一种巨大而脆弱的薄纱结构,其作用是控制轨道。镜子反射作用在其上的太阳辐射,这会在帆上产生反作用力,因为轨道动力学、姿态动力学和结构动力学是高度耦合的。是耦合的,因为辐射压力的作用方向取决于帆的姿态,这类似于风中在湖面上移动的帆船的运动,太阳帆的有用目的地是太阳和力之间的点。太阳帆可用于探测太阳风暴并在风暴到来之前向地球发出警告。放置太阳帆的另一个有用点是处于“极点”位置,即太阳帆不绕地球运行,而是绕地球运行。而是位于北极上方并与地球一起移动当它绕太阳运行时,为了使用这些特殊轨道,我们需要确定在尽可能短的时间内到达这些地方的姿态运动,我们希望确定遵循规定姿态运动的控制方法。将研究两种驱动方法:使用尖端叶片(装在主帆角上的小型微型太阳帆)和使用平衡质量。首先需要解决的是决心提供控制系统所需的控制扭矩后,要研究的下一个问题是形状控制。需要考虑两个子问题:振动。由于缺乏分布式驱动和传感,并且驱动在物理上与典型的传感不并置,人们假设包括在帆中心测量的姿态和角速率信息,因此两者都变得复杂。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Damaren, Christopher其他文献

Damaren, Christopher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Damaren, Christopher', 18)}}的其他基金

Solar Sailing: Attitude, Orbit, and Shape Control
太阳航行:姿态、轨道和形状控制
  • 批准号:
    RGPIN-2020-04037
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Solar Sailing: Attitude, Orbit, and Shape Control
太阳航行:姿态、轨道和形状控制
  • 批准号:
    RGPIN-2020-04037
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Spacecraft Control Systems: Hybrid Continuous/Impulsive Control
航天器控制系统:混合连续/脉冲控制
  • 批准号:
    RGPIN-2015-06363
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Spacecraft Control Systems: Hybrid Continuous/Impulsive Control
航天器控制系统:混合连续/脉冲控制
  • 批准号:
    RGPIN-2015-06363
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Spacecraft Control Systems: Hybrid Continuous/Impulsive Control
航天器控制系统:混合连续/脉冲控制
  • 批准号:
    RGPIN-2015-06363
  • 财政年份:
    2017
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Spacecraft Control Systems: Hybrid Continuous/Impulsive Control
航天器控制系统:混合连续/脉冲控制
  • 批准号:
    RGPIN-2015-06363
  • 财政年份:
    2016
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Spacecraft Control Systems: Hybrid Continuous/Impulsive Control
航天器控制系统:混合连续/脉冲控制
  • 批准号:
    RGPIN-2015-06363
  • 财政年份:
    2015
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Control of microspacecraft: formation flying, magnetic attitude control, and structural shape control
微型航天器控制:编队飞行、磁姿态控制、结构形状控制
  • 批准号:
    121947-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Control of microspacecraft: formation flying, magnetic attitude control, and structural shape control
微型航天器控制:编队飞行、磁姿态控制、结构形状控制
  • 批准号:
    121947-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Control of microspacecraft: formation flying, magnetic attitude control, and structural shape control
微型航天器控制:编队飞行、磁姿态控制、结构形状控制
  • 批准号:
    121947-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

SBIR Phase I: Hermetic, Expeditionary Sailing Vessel
SBIR 第一阶段:密封式远征帆船
  • 批准号:
    2126527
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Standard Grant
HEALTHY SAILING - Prevention, mitigation, management of infectious diseases on cruise ships and passenger ferries
健康航行——游轮和客轮传染病的预防、缓解和管理
  • 批准号:
    10040720
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    EU-Funded
Solar Sailing: Attitude, Orbit, and Shape Control
太阳航行:姿态、轨道和形状控制
  • 批准号:
    RGPIN-2020-04037
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Research on automatic maneuverability of quadmaran vessel for faster and efficient sailing to improve cruising distance
四体船自动操纵性研究,实现更快、更高效航行,提高续航距离
  • 批准号:
    20H02376
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Decarbonisation of Maritime Transportation: A Return to Commercial Sailing
海上运输脱碳:回归商业航行
  • 批准号:
    107138
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了