Leveraging Big Data to develop an expert system for the optimal operation of smart water networks
利用大数据开发智能水网优化运行专家系统
基本信息
- 批准号:RGPIN-2021-03194
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Aging drinking water systems (DWS) worldwide are under increasing pressure to reduce non-revenue water (NRW, estimated at over $14B USD/year), minimize energy costs, and cut greenhouse gas emissions (GHGs). However, the capital costs to replace this aging infrastructure, estimated by the American Water Works Association in 2019 to over $472B USD in the USA by 2039, is cost-prohibitive - triggering a need for innovative solutions to address these significant issues. Due to the latest developments in wireless sensors, many DWS are now collecting high-frequency streams of key variables (e.g., parcel level consumer water demand) at varying spatial and temporal scales, resulting in Big Data and prompting the conversion of traditional DWS to smart water networks (SWANs) that enable the mitigation of sub-optimal DWS operations (e.g., by minimizing energy usage). SWANs rely on expert systems based on data-driven models (e.g., machine learning) to identify optimal operational decisions that meet the goals of DWS managers, who struggle to sustainably operate DWS in the face of numerous uncertainties (e.g., changing water demand). However, SWANs are still in their infancy and there are no expert systems that can handle Big Data and account for uncertainty in DWS in a computationally efficient manner. My long-term vision is to optimize DWS through the use of SWANs. The next 5 years of my research program will focus on the most immediate needs to realize an expert system to address these important challenges. The expert system will be built sequentially through three short-term objectives: 1) novel state-of-the-art data-driven models will be explored for pre-processing and making accurate forecasts from Big Data associated with SWANs (e.g., parcel level consumer water demands); 2) these models will be incorporated in a novel stochastic framework to account for several important uncertainty sources (e.g., model structure) and temporal correlations to improve the reliability of the expert system; and 3) the previous two stages will be coupled with reinforcement learning for optimizing SWANs (with a focus on pump schedule optimization) according to key operational goals (minimizing NRW, energy costs, and/or GHGs). To demonstrate their superiority, the novel developments from each objective will be rigorously compared against current state-of-the-art methods and benchmark approaches adopted by water utilities. The proposed research will advance new knowledge on optimizing SWANs and provide a novel expert system for water utilities to address pressing challenges, with the potential to save utilities $4.6B USD/year in operation costs. Through my program, 8 student researchers will gain the skills necessary to make significant impacts at water utilities (e.g., City of Ottawa) and private firms invested in SWANs (e.g., Innovyze), contributing to the sustainable management of water resources and placing Canada at the forefront of research in SWANs.
全世界衰老的饮用水系统(DWS)面临减少非收入水的压力(NRW,估计每年超过14B美元),最小化能源成本和减少温室气体排放(GHGS)。但是,替代这项老化基础设施的资本成本是由2019年美国水工厂协会估计到2039年在美国的472B美元以上的资本成本,这是成本良好的 - 触发了创新解决方案以解决这些重大问题的需求。由于无线传感器的最新发展,许多DW现在正在在不同的空间和时间尺度上收集高频流的关键变量(例如,包裹水平的消费者水需求),从而获得了大数据,并促使传统DWS转换为智能水网络(SWAN)(SWAN),从而通过智能水网(SWAN)进行了缓解的能源,从而促进了Sub-opptimal d.gs decemaim decemage nim decemime dec。天鹅依靠基于数据驱动模型(例如机器学习)的专家系统来确定满足DWS经理目标的最佳操作决策,他们在面对许多不确定性(例如,供水需求变化)的情况下努力可持续运营DWS。但是,天鹅仍处于起步阶段,没有专家系统可以以计算有效的方式处理大数据并说明DWS的不确定性。我的长期愿景是通过使用天鹅来优化DW。我的研究计划的接下来的5年将重点介绍实现专家系统以应对这些重要挑战的最直接需求。专家系统将通过三个短期目标依次构建:1)将探索新的最新数据驱动模型,以预处理并从与Swans相关的大数据(例如,包裹水平的消费者用水需求)中进行准确的预测; 2)这些模型将纳入新的随机框架中,以说明几种重要的不确定性来源(例如模型结构)和时间相关性,以提高专家系统的可靠性; 3)根据关键的运营目标(最小化NRW,能源成本和/或温室气体),前两个阶段将结合使用加固学习以优化天鹅(重点介绍泵计划优化)。为了证明它们的优势,将严格地将每个目标的新发展与当前的最新方法和基准方法进行比较。拟议的研究将促进有关优化天鹅的新知识,并为水公用事业公司提供新颖的专家系统,以应对紧迫的挑战,并有可能节省公用事业的运营成本$ 4.6B美元。通过我的计划,8位学生研究人员将获得必要的技能,以对水电(例如渥太华市)和投资天鹅(例如Innovyze)投资的私人公司产生重大影响,这为水资源的可持续管理和将加拿大放置在天鹅的研究最前沿做出了贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Quilty, John其他文献
Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework
- DOI:
10.1016/j.jhydrol.2018.05.003 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:6.4
- 作者:
Quilty, John;Adamowski, Jan - 通讯作者:
Adamowski, Jan
On the applicability of maximum overlap discrete wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction
- DOI:
10.1016/j.agrformet.2019.107647 - 发表时间:
2019-11-15 - 期刊:
- 影响因子:6.2
- 作者:
Ghaemi, Alireza;Rezaie-Balf, Mohammad;Quilty, John - 通讯作者:
Quilty, John
Quilty, John的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Quilty, John', 18)}}的其他基金
Leveraging Big Data to develop an expert system for the optimal operation of smart water networks
利用大数据开发智能水网优化运行专家系统
- 批准号:
RGPIN-2021-03194 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Leveraging Big Data to develop an expert system for the optimal operation of smart water networks
利用大数据开发智能水网优化运行专家系统
- 批准号:
DGECR-2021-00322 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
多源数据约束下的大尺度河道形状建模方法研究
- 批准号:42371481
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
时序工况下模块化数据生成的大机车轴齿轮箱在线剩余寿命预测研究
- 批准号:52305140
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于神经功能影像数据的抑郁症大尺度脑网络动力学建模及调控研究
- 批准号:12305051
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理模型-实测数据协同驱动的大跨索承桥梁特异风效应与灾变机理研究
- 批准号:52338011
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
相似海外基金
Leveraging complementary big data methods and patient intervention designs to optimize neural markers of adolescent cannabis use
利用互补的大数据方法和患者干预设计来优化青少年大麻使用的神经标记
- 批准号:
10739527 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Leveraging multi-omics for endotyping to identify subtypes and mechanisms of cardiometabolic diseases
利用多组学进行内分型来识别心脏代谢疾病的亚型和机制
- 批准号:
10664282 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Leveraging Local Health System Electronic Health Record Data to Enhance PrEP Access in Southeastern Louisiana: A Community-Informed Approach
利用当地卫生系统电子健康记录数据增强路易斯安那州东南部的 PrEP 获取:社区知情方法
- 批准号:
10459860 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
The Multi-Omic Milk (MuMi) Study: Leveraging the IMiC Platform and the CHILD Cohort to study human milk as a biological system and understand its composition, determinants and impacts on child health
多组学牛奶 (MuMi) 研究:利用 IMiC 平台和儿童队列研究母乳作为一个生物系统,并了解其成分、决定因素以及对儿童健康的影响
- 批准号:
10532119 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Leveraging Big Data to develop an expert system for the optimal operation of smart water networks
利用大数据开发智能水网优化运行专家系统
- 批准号:
RGPIN-2021-03194 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual