Predicting geological and geomechanical rock properties using data analytics and multi-sensor core logging data
使用数据分析和多传感器岩心测井数据预测地质和地质力学岩石特性
基本信息
- 批准号:RGPIN-2020-06196
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A detailed modelling of geological and geotechnical rock mass properties is essential for a cost effective and safe mining operation. Despite improvements in almost every technological aspect of mine planning and design, lack of sufficient and consistently measured data for the development of a detailed geological and geotechnical model remains a challenge. A higher quality and quantity of geological and geotechnical data is required to model the spatial variation of rock mass properties and to lower uncertainties in mine planning and design. Core logging is a fundamental method in obtaining geological and geotechnical data. However, the manual core logging methods are subjective, time consuming and inconsistent, which can significantly reduce the reliability of the resulting geological and geotechnical models. To overcome these limitations, new rock measurement and analysis techniques that automate the collection and analysis of data are required. This research program aims to advance prediction of rock geological and geomechanical properties using data from a multi--sensor core logging system. This will be achieved through the collection of multi-variate rock physical, mechanical, mineralogical and structural properties from non--destructive tests, together with high resolution images of the core samples. The data will then be used to develop machine learning models to predict geological and geomechanical rock properties. Core samples from geotechnical boreholes will be logged using both the manual and the multi--sensor core logging system. The high- quality images of the core samples along with the multi--variate core logging data will be processed to develop a multi--modal dataset. The dataset will be used for predictive models of geological and geomechanical rock properties. Supervised machine learning techniques will be used to train predictive models using the multi--modal mixed data. The models will be employed to automatically: predict and classify lithological rock units and their mechanical properties; detect and characterize geometrical attributes of natural discontinuities using image analysis; predict shear behaviour of discontinuities using digital core logging data; classify geomechanical rock mass properties based on multi--parameter digital core logging data; and to investigate the influence of data quality and quantity on geotechnical models used for mine design. The predictive geomechanical models from the digital core logging system will be compared to the models developed based on manual core logging data. The results of the research are expected to improve rock characterization and classification; allow informed decision making in mine planning and optimization; reduce the time and cost associated with unpredicted ground conditions; and reduce the risk of mine excavation failure and its associated costs.
地质和岩土岩质量特性的详细建模对于具有成本效益且安全的采矿操作至关重要。尽管矿山计划和设计的几乎所有技术方面都有改进,但缺乏足够且一致测量的数据来开发详细的地质和岩土技术模型仍然是一个挑战。需要更高质量和数量的地质和岩土数据来建模岩体质量特性的空间变化,并降低矿山计划和设计中的不确定性。核心记录是获取地质和岩土数据的基本方法。但是,手动核心记录方法是主观的,耗时且不一致的,可以显着降低所得地质和岩土技术模型的可靠性。为了克服这些局限性,需要新的岩石测量和分析技术来自动化数据的收集和分析。该研究计划旨在使用来自多传感器核心记录系统的数据来推动岩石地质和地质力学特性的预测。这将通过非破坏性测试的多变量岩石物理,机械,矿物学和结构特性以及核心样品的高分辨率图像以及高分辨率图像来实现。然后,数据将用于开发机器学习模型,以预测地质和地质力学岩石特性。使用手册和多传感器核心记录系统将记录来自岩土技术钻孔的核心样品。将处理核心样品的高质量图像以及多种核心记录数据以开发多模式数据集。该数据集将用于地质和地质力学岩石特性的预测模型。监督的机器学习技术将用于使用多模式混合数据来训练预测模型。这些模型将用于自动:预测和分类岩性岩石单元及其机械性能;使用图像分析检测并表征自然不连续性的几何属性;使用数字核心记录数据预测不连续性的剪切行为;基于多参数数字核心记录数据对地质力学岩体质量特性进行分类;并研究数据质量和数量对用于矿山设计的岩土技术模型的影响。将数字核心记录系统的预测地质力学模型与基于手动核心记录数据开发的模型进行比较。该研究的结果有望改善岩石的特征和分类。允许矿山计划和优化中明智的决策;减少与不可预测的地面条件相关的时间和成本;并降低我的发掘失败及其相关成本的风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Esmaeili, Kamran其他文献
A deep learning approach for rock fragmentation analysis
- DOI:
10.1016/j.ijrmms.2021.104839 - 发表时间:
2021-06-25 - 期刊:
- 影响因子:7.2
- 作者:
Bamford, Thomas;Esmaeili, Kamran;Schoellig, Angela P. - 通讯作者:
Schoellig, Angela P.
Continuous Monitoring and Improvement of the Blasting Process in Open Pit Mines Using Unmanned Aerial Vehicle Techniques
- DOI:
10.3390/rs12172801 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:5
- 作者:
Bamford, Thomas;Medinac, Filip;Esmaeili, Kamran - 通讯作者:
Esmaeili, Kamran
Discontinuous Modeling of Roof Strata Caving in a Mechanized Longwall Mine in Tabas Coal Mine
- DOI:
10.1061/(asce)gm.1943-5622.0002337 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:3.7
- 作者:
Arasteh, Hossein;Esmaeili, Kamran;Farsangi, Mohammad Ali Ebrahimi - 通讯作者:
Farsangi, Mohammad Ali Ebrahimi
An analytical solution for analysis of toppling-slumping failure in rock slopes
- DOI:
10.1016/j.enggeo.2019.105396 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:7.4
- 作者:
Haghgouei, Hadi;Kargar, Ali Reza;Esmaeili, Kamran - 通讯作者:
Esmaeili, Kamran
Esmaeili, Kamran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Esmaeili, Kamran', 18)}}的其他基金
Predicting geological and geomechanical rock properties using data analytics and multi-sensor core logging data
使用数据分析和多传感器岩心测井数据预测地质和地质力学岩石特性
- 批准号:
RGPIN-2020-06196 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Automated Geological and Structural Mapping of Open Pit Mines using Unmanned Aerial Vehicle (UAV) Systems and Machine Learning
使用无人机 (UAV) 系统和机器学习自动绘制露天矿地质和结构测绘
- 批准号:
561041-2020 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Alliance Grants
Development of rapid and automated remote sensing methods for ground engagement equipment enabling selective mining
开发用于地面接触设备的快速自动化遥感方法,以实现选择性采矿
- 批准号:
561062-2020 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Alliance Grants
Predicting geological and geomechanical rock properties using data analytics and multi-sensor core logging data
使用数据分析和多传感器岩心测井数据预测地质和地质力学岩石特性
- 批准号:
RGPIN-2020-06196 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
A Spatial Numerical Approach for Heterogeneous Slope Stability Analysis in Open Pit Mines
露天矿非均质边坡稳定性分析的空间数值方法
- 批准号:
RGPIN-2014-03992 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
A Spatial Numerical Approach for Heterogeneous Slope Stability Analysis in Open Pit Mines
露天矿非均质边坡稳定性分析的空间数值方法
- 批准号:
RGPIN-2014-03992 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Development of unmanned aerial vehicle systems for real-time mining data acquisition and decision making
开发实时采矿数据采集和决策的无人机系统
- 批准号:
508741-2017 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Collaborative Research and Development Grants
Characterizing the effect of micro and macro heterogeneity of rock on its comminution behaviour
表征岩石微观和宏观非均质性对其破碎行为的影响
- 批准号:
500310-2016 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Collaborative Research and Development Grants
Improving blast-induced rock fragmentation in Milton Quarry
改善米尔顿采石场爆炸引起的岩石破碎
- 批准号:
514506-2017 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Engage Grants Program
A Spatial Numerical Approach for Heterogeneous Slope Stability Analysis in Open Pit Mines
露天矿非均质边坡稳定性分析的空间数值方法
- 批准号:
RGPIN-2014-03992 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
隧道穿越活动断裂突水突泥灾害机理地质力学模型试验研究
- 批准号:42307228
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
地下大当量爆炸的关键地质力学问题
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
深埋隧道应力-结构型岩爆的地质力学模式与预警研究
- 批准号:42177173
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
基于压裂过程中四维地质力学的套管变形机理及控制方法研究
- 批准号:52004013
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
活动断裂带岩体工程地质力学模型及应力异常响应机制研究
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
相似海外基金
Doctoral Dissertation Research: Spatial and Geological Mapping in Local Communities
博士论文研究:当地社区的空间和地质测绘
- 批准号:
2342887 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Open Access Block Award 2024 - British Geological Survey
2024 年开放获取区块奖 - 英国地质调查局
- 批准号:
EP/Z531406/1 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Research Grant
Understanding the physico-chemical evolution at the steel-cement interfaces in geological CO2 storage environments
了解地质二氧化碳储存环境中钢-水泥界面的物理化学演化
- 批准号:
2911029 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Studentship
NSF-NERC: Geological History Constraints on the Magnitude of Grounding Line Retreat in the Thwaites Glacier System
NSF-NERC:地质历史对思韦茨冰川系统接地线后退幅度的限制
- 批准号:
2317097 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Geological conditions and long-term process leading to a massive landslide adjacent to an active-fault termination
地质条件和长期过程导致活动断层终止处附近发生大规模山体滑坡
- 批准号:
23H00728 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)