Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
基本信息
- 批准号:RGPIN-2020-04060
- 负责人:
- 金额:$ 2.7万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geometry has played an ever increasing role in mathematics and theoretical physics over the past few years: encoding into a geometric object a solution to a partial differential equation, or a physical field, highlights its symmetries, shows which operations are natural and which are not, and generally gives one an idea of what is going on. One can think here of the role of a connection and its curvature in encoding electromagnetic fields and Maxwell's equations, or of the role of strings and their world sheet surfaces in understanding particle physics. A more applied set of problems with extensive geometric ramifications have been the various shallow water wave equations and their solutions, linked to infinite dimensional Hamiltonian systems. My research, and so this proposal centres on two interrelated classes of objects that often arise in these contexts. The first class is that of moduli spaces, the spaces which classify or describe the sets of all objects of a given type: the moduli space of all curves (of a given genus), the moduli space of all bundles, the space of all solutions to a given differential equation, and so on. Questions studied include their construction or description of these spaces, the study of their topology, how they behave as one varies natural parameters, and of course the relations between these spaces. Specific projects include instanton moduli on ALF manifolds, compactification of moduli, spectral asymptotics, topological stability, geometry of local systems. Techniques used are essentially algebraic geometry and differential geometry, with a bit of the theory of partial differential equations. The second segment of my proposal concerns integrable systems. The original definition of these systems was as mechanical systems with sufficiently many symmetries to ensure that they could be more or less explicitly solved; this was then extended to infinite dimensions, allowing the study of "solitons", solutions to shallow water wave equations which behave like solitary waves. From there, the notion has become even more flexible, and encompasses amongst many other things, flows of a geometric origin, and the theory of the functions which arise in this context; and more generally, extraction of solutions from algebras of symmetries. Specific projects include the geometry of tau-functions, tau functions and enumerative invariants, determinant bundles and isomonodromy, deformations to toric varieties, and the geometry of discrete lattice systems. Again, the range of technique is mainly geometrical. The impact for Canada is basically in ensuring a Canadian presence in what has become a central domain of research internationally, and of course training a new generation of mathematical scientists in the area.
在过去的几年里,几何在数学和理论物理中发挥着越来越重要的作用:将偏微分方程或物理场的解编码到几何对象中,突出其对称性,显示哪些运算是自然的,哪些不是,通常可以让人们了解正在发生的事情。人们可以在这里想到连接及其曲率在编码电磁场和麦克斯韦方程中的作用,或者弦及其世界片表面在理解粒子物理学中的作用。一系列具有广泛几何影响的更实用的问题是与无限维哈密顿系统相关的各种浅水波动方程及其解。我的研究以及本提案的重点是在这些背景下经常出现的两类相互关联的对象。 第一类是模空间,对给定类型的所有对象的集合进行分类或描述的空间:(给定属的)所有曲线的模空间,所有丛的模空间,所有解的空间到给定的微分方程,等等。研究的问题包括这些空间的构造或描述、它们的拓扑结构的研究、它们在不同自然参数下的行为方式,当然还有这些空间之间的关系。具体项目包括 ALF 流形上的瞬时模、模的紧化、谱渐近、拓扑稳定性、局部系统的几何形状。使用的技术本质上是代数几何和微分几何,以及一些偏微分方程的理论。我提案的第二部分涉及可积系统。这些系统的最初定义是具有足够多对称性的机械系统,以确保它们或多或少可以明确地求解;然后将其扩展到无限维度,从而可以研究“孤子”,即表现得像孤立波的浅水波方程的解。从那时起,这个概念变得更加灵活,除了许多其他内容之外,还包括几何起源的流动以及在此背景下出现的函数理论;更一般地说,从对称代数中提取解。具体项目包括 tau 函数的几何、tau 函数和枚举不变量、行列式丛和等单律、环曲面簇的变形以及离散晶格系统的几何。同样,技术的范围主要是几何的。对加拿大的影响基本上是确保加拿大在国际研究中心领域的存在,当然还有在该领域培训新一代数学科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hurtubise, Jacques其他文献
Hurtubise, Jacques的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hurtubise, Jacques', 18)}}的其他基金
Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
- 批准号:
RGPIN-2020-04060 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
- 批准号:
RGPIN-2020-04060 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
- 批准号:
RGPIN-2020-04060 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
- 批准号:
RGPIN-2020-04060 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Moduli Spaces and Integrable Systems
模空间和可积系统
- 批准号:
RGPIN-2015-04393 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Moduli Spaces and Integrable Systems
模空间和可积系统
- 批准号:
RGPIN-2015-04393 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Moduli Spaces and Integrable Systems
模空间和可积系统
- 批准号:
RGPIN-2015-04393 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Moduli Spaces and Integrable Systems
模空间和可积系统
- 批准号:
RGPIN-2015-04393 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Moduli Spaces and Integrable Systems
模空间和可积系统
- 批准号:
RGPIN-2015-04393 - 财政年份:2017
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Moduli Spaces and Integrable Systems
模空间和可积系统
- 批准号:
RGPIN-2015-04393 - 财政年份:2017
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
面向大规模数据的深度子空间聚类方法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于模数协调的集成装配式护理单元空间自适应优化研究
- 批准号:51908360
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于内存的大规模空间数据管理和机器学习系统
- 批准号:61802364
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
空间约束的在线包组推荐优化与公平性研究
- 批准号:61862013
- 批准年份:2018
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
装配式农村住宅设计体系与方法研究——以石家庄东南部平原郊区农村为例
- 批准号:51708168
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
- 批准号:
2401387 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Research Grant
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
- 批准号:
2304840 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
- 批准号:
2304840 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
- 批准号:
RGPIN-2020-04060 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual