Advanced Battery Research for a Future with Sustainable Energy, Mobility, and Water
先进电池研究,打造可持续能源、交通和水的未来
基本信息
- 批准号:RGPIN-2021-02383
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
"Advanced Battery Research for a Future with Sustainable Energy, Mobility, and Water" We research high-energy lithium-ion batteries (LIB), develop long-lived lithium metal batteries (LMB) and create revolutionary devices for energy-efficient water desalination, so-called "desalination batteries" (DSB) in order to fulfill our group's mission to bring us closer to a future with sustainable energy, mobility, and water. Advanced lithium-ion batteries (LIB) - The mass market adoption of battery electric vehicles (BEVs) is mostly hindered by the battery pack cost, which today still makes for ~50% of the BEV cost. To bring down battery cost we will use lower cost materials, raise the cell energy by charging to higher voltages, and extend battery lifetime. Specifically, we will construct the world's first multi-channel on-line electrochemical mass spectrometer (multi-OEMS) for real-time quantification of gases generated in battery cells. We will employ this unique tool to accurately quantify - for the first time - the gas release of novel Co-free cathodes, which prevents their use in commercial cells. Lithium metal batteries (LMB) - The lithium metal anode receives considerable attention from industry as a technology to increase the energy density of rechargeable batteries by ~50%. Employing polymer or ceramic electrolytes in combination with a lithium metal anode in so-called "all-solid-state batteries" is hindered by manufacturability and cost. We pursue an alternative route towards safe, high-energy LMBs: The combination of advanced liquid electrolytes with anode-free cells that require no excess lithium since all lithium is stored in the cathode material at beginning of life. This "high risk, high reward" research problem can lead to a breakthrough in battery energy density for ultra-long range BEVs, electric trucks and aircraft. Desalination batteries (DSB) - There is currently no energy-efficient desalination technology to fight the growing problem of freshwater scarcity. In our lab we combine battery knowhow with a keen interest in environmental topics, so we will demonstrate that intercalation of salt ions into crystalline host structures - a concept well known from the lithium-ion battery field, but new in water desalination - can be a groundbreaking technology for freshwater production. This "battery desalination" approach can achieve more than 3x higher capacity for salt removal than established capacitive deionization, much like a lithium-ion battery that can store a lot more energy than a capacitor. This research will allow highly qualified personnel to enter the important water purity industrial sector. Our focus on advanced battery research inherently lends itself to interdisciplinary research and welcomes students from all backgrounds and gender. Our three topic areas (LIB, LMB, and DSB) all demand excellence in electrochemistry, but in turn offer solutions to three distinct societal challenges: clean energy, mobility and water.
“先进电池研究,打造可持续能源、移动性和水的未来”我们研究高能锂离子电池(LIB),开发长寿命锂金属电池(LMB),并创造用于节能海水淡化的革命性设备,所谓的“海水淡化电池”(DSB),以履行我们集团的使命,让我们更接近拥有可持续能源、流动性和水的未来。先进锂离子电池 (LIB) - 纯电动汽车 (BEV) 的大规模市场采用主要受到电池组成本的阻碍,目前电池组成本仍占 BEV 成本的约 50%。为了降低电池成本,我们将使用成本较低的材料,通过充电至更高电压来提高电池能量,并延长电池寿命。具体来说,我们将建造世界上第一台多通道在线电化学质谱仪(multi-OEMS),用于实时定量电池单元中产生的气体。我们将利用这种独特的工具首次准确量化新型无钴阴极的气体释放量,这阻碍了它们在商业电池中的使用。锂金属电池 (LMB) - 锂金属阳极作为一项将可充电电池的能量密度提高约 50% 的技术受到了业界的广泛关注。在所谓的“全固态电池”中将聚合物或陶瓷电解质与锂金属阳极结合使用受到可制造性和成本的阻碍。我们寻求一种实现安全、高能 LMB 的替代途径:将先进的液体电解质与无阳极电池相结合,无需过量的锂,因为所有锂在生命之初都存储在阴极材料中。这一“高风险、高回报”的研究问题可以为超远程纯电动汽车、电动卡车和飞机的电池能量密度带来突破。海水淡化电池(DSB)——目前还没有节能的海水淡化技术来解决日益严重的淡水短缺问题。在我们的实验室中,我们将电池专业知识与对环境主题的浓厚兴趣结合起来,因此我们将证明将盐离子嵌入到晶体主体结构中(这是锂离子电池领域众所周知的概念,但在海水淡化领域是一个新概念)可以成为一种解决方案。淡水生产的突破性技术。这种“电池脱盐”方法的除盐能力比现有的电容去离子法高出 3 倍以上,就像锂离子电池可以比电容器存储更多能量一样。这项研究将使高素质人才进入重要的水净化工业领域。我们对先进电池研究的关注本质上适合跨学科研究,并欢迎来自各种背景和性别的学生。我们的三个主题领域(LIB、LMB 和 DSB)都需要卓越的电化学性能,但反过来又为三个不同的社会挑战提供解决方案:清洁能源、交通和水。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Metzger, Michael其他文献
Controlling the dynamics of Forster resonance energy transfer inside a tunable sub-wavelength Fabry-Perot-resonator
- DOI:
10.1039/c5nr02027a - 发表时间:
2015-01-01 - 期刊:
- 影响因子:6.7
- 作者:
Konrad, Alexander;Metzger, Michael;Meixner, Alfred J. - 通讯作者:
Meixner, Alfred J.
Expanding LAGLIDADG endonuclease scaffold diversity by rapidly surveying evolutionary sequence space
- DOI:
10.1093/nar/gkr1303 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:14.9
- 作者:
Jacoby, Kyle;Metzger, Michael;Scharenberg, Andrew M. - 通讯作者:
Scharenberg, Andrew M.
Reversing the Chemical and Structural Changes of Prussian White After Exposure to Humidity to Enable Aqueous Electrode Processing for Sodium-ion Batteries
- DOI:
10.1149/1945-7111/acc6f5 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:3.9
- 作者:
Hartmann, Louis;Deshmukh, Jay;Metzger, Michael - 通讯作者:
Metzger, Michael
Chemical versus Electrochemical Electrolyte Oxidation on NMC111, NMC622, NMC811, LNMO, and Conductive Carbon
- DOI:
10.1021/acs.jpclett.7b01927 - 发表时间:
2017-10-05 - 期刊:
- 影响因子:5.7
- 作者:
Jung, Roland;Metzger, Michael;Gasteiger, Hubert A. - 通讯作者:
Gasteiger, Hubert A.
Techno-economic analysis of capacitive and intercalative water deionization
- DOI:
10.1039/d0ee00725k - 发表时间:
2020-06-01 - 期刊:
- 影响因子:32.5
- 作者:
Metzger, Michael;Besli, Munir M.;Christensen, Jake - 通讯作者:
Christensen, Jake
Metzger, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Metzger, Michael', 18)}}的其他基金
Advanced Battery Research for a Future with Sustainable Energy, Mobility, and Water
先进电池研究,打造可持续能源、交通和水的未来
- 批准号:
RGPIN-2021-02383 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Advanced ultraviolet-visible spectrometer for the quantitative analysis of electrolyte degradation species formed in battery cells
先进的紫外-可见光谱仪,用于定量分析电池中形成的电解质降解物质
- 批准号:
RTI-2023-00267 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Research Tools and Instruments
Advanced Battery Research for a Future with Sustainable Energy, Mobility, and Water
先进电池研究,打造可持续能源、交通和水的未来
- 批准号:
DGECR-2021-00008 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
氢燃料电池铂基氧还原电催化的微环境效应研究
- 批准号:22379002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
水系锌离子电池氧化物异质结构正极材料的构筑及储能机理研究
- 批准号:52372200
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
过渡金属单原子/亚纳米团簇复合催化剂的构筑及其锂硫电池性能研究
- 批准号:52302261
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于一维线性结构的氟化电解质设计及在固态高压锂金属电池中的性能研究
- 批准号:52302083
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
原位构筑固体电解质电池R-P型电极还原NOx及同步氧化HC机制研究
- 批准号:52300142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced Battery Research for a Future with Sustainable Energy, Mobility, and Water
先进电池研究,打造可持续能源、交通和水的未来
- 批准号:
RGPIN-2021-02383 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Advanced Battery Research for a Future with Sustainable Energy, Mobility, and Water
先进电池研究,打造可持续能源、交通和水的未来
- 批准号:
DGECR-2021-00008 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
Optimizing coordinated reset deep brain stimulation for Parkinson's disease
优化帕金森病的协调重置深部脑刺激
- 批准号:
10636865 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuit
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
- 批准号:
10656608 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
EAPSI:RESEARCH EXPERIENCE ON HIGH CAPACITY CATHODES AT ADVANCED BATTERY LABORATORY, NUS, SINGAPORE
EAPSI:新加坡国立大学高级电池实验室高容量阴极的研究经验
- 批准号:
1105449 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Fellowship Award