Advanced time-resolved optical sensing and imaging systems for biomedical and environmental applications

适用于生物医学和环境应用的先进时间分辨光学传感和成像系统

基本信息

  • 批准号:
    RGPIN-2019-07127
  • 负责人:
  • 金额:
    $ 3.35万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Recent advances in photonics and electronics technologies are one of the driving forces behind many novel photonics devices development. Among these device technologies, optical sensing and imaging have been investigated for applications in life sciences research (e.g. microscopic imaging and analytical instruments), environmental sensing (e.g. water quality monitoring) and medical diagnosis (e.g. endoscopic imaging and laboratory test instruments). The majority of the instruments and devices operate by measuring the amplitude of the light intensity in the spatial (e.g. imaging) and spectral (e.g. spectroscopy) domain. Time-dependent intensity variation, especially at high speed, are not as widely used, even when many feasibility studies demonstrated that they provide important information for many applications. For example, comparing to intensive based measurements, fluorescence lifetime imaging (FLIM) can provide more efficient measure of protein-protein interaction at 1-10 nm scale, which could be very useful in drug discovery process. However, there is no commercial high content screening instrument with a high resolution FLIM capability for measuring protein-protein interaction. Another example is dissolved oxygen (DO) measurements. Although commercial frequency modulated DO instruments exist for more than 10 years, miniaturized lab-on-chip DO measurements are still relying on steady-state techniques and usually cost over $1000 each. In the proposed research program, we plan to study the integration of photonics, microelectronics, and mechanical components into next generation time-resolved optical sensors/imagers. Specifically, we will 1)develop technologies towards a FLIM microscope with the highest acquisition speed with high spatial and temporal resolution; 2)develop integrated time-resolved compact optofluidics sensor devices capable of continuous measurements while remain low-cost; 3)develop customized computational algorithms tailored to the detection technologies for accurate and fast time-domain parameter retrieval. The proposed advanced sensing and imaging technology program will be supported by the world class Micro/Nano material synthetization, component fabrication, characterization, and device integration facilities available at McMaster. The program will focus on integrated time-domain optical sensing and imaging device technology development. The applications of such technologies include life science analytical instruments, automated microscopy for drug discovery, and environmental monitoring. Research in these applications will be supported by project-based funding mechanisms including NSERC, OCE, and CIHR.
光子学和电子技术的最新进展是许多新型光子器件开发背后的驱动力之一。在这些设备技术中,光学传感和成像已被研究用于生命科学研究(例如显微成像和分析仪器)、环境传感(例如水质监测)和医疗诊断(例如内窥镜成像和实验室测试仪器)。 大多数仪器和设备通过测量空间(例如成像)和光谱(例如光谱)域中的光强度幅度来运行。与时间相关的强度变化,尤其是在高速情况下,并未得到广泛使用,即使许多可行性研究表明它们为许多应用提供了重要信息。例如,与基于密集的测量相比,荧光寿命成像 (FLIM) 可以在 1-10 nm 尺度上提供更有效的蛋白质-蛋白质相互作用测量,这在药物发现过程中非常有用。然而,目前还没有具有高分辨率 FLIM 功能的商用高内涵筛选仪器用于测量蛋白质-蛋白质相互作用。另一个例子是溶解氧 (DO) 测量。尽管商用调频 DO 仪器已存在 10 多年,但小型片上实验室 DO 测量仍然依赖于稳态技术,并且每台仪器的成本通常超过 1000 美元。 在拟议的研究计划中,我们计划研究将光子学、微电子学和机械部件集成到下一代时间分辨光学传感器/成像仪中。具体来说,我们将1)开发具有最高采集速度和高空间和时间分辨率的FLIM显微镜技术; 2)开发集成的时间分辨紧凑型光流控传感器装置,能够连续测量,同时保持低成本; 3)开发适合检测技术的定制计算算法,以实现准确、快速的时域参数检索。 拟议的先进传感和成像技术计划将得到麦克马斯特大学世界一流的微/纳米材料合成、元件制造、表征和设备集成设施的支持。该计划将重点关注集成时域光学传感和成像器件技术的开发。此类技术的应用包括生命科学分析仪器、用于药物发现的自动显微镜和环境监测。这些应用的研究将得到基于项目的资助机制的支持,包括 NSERC、OCE 和 CIHR。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fang, Qiyin其他文献

Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy.
通过时间分辨激光诱导荧光光谱检测易于破裂的动脉粥样硬化斑块。
  • DOI:
  • 发表时间:
    2009-05
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Marcu, Laura;Jo, Javier A;Fang, Qiyin;Papaioannou, Thanassis;Reil, Todd;Qiao, Jian;Baker, J Dennis;Freischlag, Julie A;Fishbein, Michael C
  • 通讯作者:
    Fishbein, Michael C
Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm.
光纤探头设计和探头到目标距离对浑浊介质漫反射测量的影响:337 nm 的实验和计算研究。
  • DOI:
  • 发表时间:
    2004-05-10
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Papaioannou, Thanassis;Preyer, Norris W;Fang, Qiyin;Brightwell, Adam;Carnohan, Michael;Cottone, Greg;Ross, Russel;Jones, Linda R;Marcu, Laura
  • 通讯作者:
    Marcu, Laura
In vivo detection of macrophages in a rabbit atherosclerotic model by time-resolved laser-induced fluorescence spectroscopy.
通过时间分辨激光诱导荧光光谱法体内检测兔动脉粥样硬化模型中的巨噬细胞。
  • DOI:
  • 发表时间:
    2005-08
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Marcu, Laura;Fang, Qiyin;Jo, Javier A;Papaioannou, Thanassis;Dorafshar, Amir;Reil, Todd;Qiao, Jian;Baker, J Dennis;Freischlag, Julie A;Fishbein, Michael C
  • 通讯作者:
    Fishbein, Michael C
Endoplasmic reticulum protein BIK binds to and inhibits mitochondria-localized antiapoptotic proteins
内质网蛋白 BIK 结合并抑制线粒体定位的抗凋亡蛋白
  • DOI:
    10.1016/j.jbc.2022.102863
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Osterlund, Elizabeth J.;Hirmiz, Nehad;Nguyen, Dang;Pemberton, James M.;Fang, Qiyin;Andrews, David W.
  • 通讯作者:
    Andrews, David W.
Distinction of brain tissue, low grade and high grade glioma with time-resolved fluorescence spectroscopy.
用时间分辨荧光光谱法区分脑组织、低级别和高级别胶质瘤。
  • DOI:
  • 发表时间:
    2006-05-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yong, William H;Butte, Pramod V;Pikul, Brian K;Jo, Javier A;Fang, Qiyin;Papaioannou, Thanassis;Black, Keith;Marcu, Laura
  • 通讯作者:
    Marcu, Laura

Fang, Qiyin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fang, Qiyin', 18)}}的其他基金

Advanced time-resolved optical sensing and imaging systems for biomedical and environmental applications
适用于生物医学和环境应用的先进时间分辨光学传感和成像系统
  • 批准号:
    RGPIN-2019-07127
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced time-resolved optical sensing and imaging systems for biomedical and environmental applications
适用于生物医学和环境应用的先进时间分辨光学传感和成像系统
  • 批准号:
    RGPIN-2019-07127
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced time-resolved optical sensing and imaging systems for biomedical and environmental applications
适用于生物医学和环境应用的先进时间分辨光学传感和成像系统
  • 批准号:
    RGPIN-2019-07127
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced time-resolved optical sensing and imaging systems for biomedical and environmental applications
适用于生物医学和环境应用的先进时间分辨光学传感和成像系统
  • 批准号:
    RGPIN-2019-07127
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Multiplexing confocal technology
多重共焦技术
  • 批准号:
    486815-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Idea to Innovation
Multiplexing confocal technology
多重共焦技术
  • 批准号:
    486815-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Idea to Innovation
Advanced time-resolved optical sensing and imaging systems for biomedical and environmental applications
适用于生物医学和环境应用的先进时间分辨光学传感和成像系统
  • 批准号:
    RGPIN-2019-07127
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced time-resolved optical sensing and imaging systems for biomedical and environmental applications
适用于生物医学和环境应用的先进时间分辨光学传感和成像系统
  • 批准号:
    RGPIN-2019-07127
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Surface modification in additive manufacturing
增材制造中的表面改性
  • 批准号:
    523142-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Engage Grants Program
Miniaturized optical sensing/imaging technology development for environmental and biomedical applications
用于环境和生物医学应用的小型化光学传感/成像技术开发
  • 批准号:
    RGPIN-2014-03710
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于中医舌诊参数及糖脂代谢指标的PCI术后再发心血管不良事件时间序列预测模型研究
  • 批准号:
    82374336
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
时间分辨的光谱视频成像火焰化学发光三维层析重建方法研究
  • 批准号:
    52376158
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于铀裂变瞬发中子时间谱的地层"三度"参数融合校正方法研究
  • 批准号:
    12365026
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
联合连续弛豫时间分布与物理阻抗模型的锂离子电池极化特性演变分析方法
  • 批准号:
    22309205
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高速SerDes的抗辐射时间交织模数转换器关键技术研究
  • 批准号:
    62304258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Advanced time-resolved optical sensing and imaging systems for biomedical and environmental applications
适用于生物医学和环境应用的先进时间分辨光学传感和成像系统
  • 批准号:
    RGPIN-2019-07127
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Study of the role of antiferromagnetic fluctuations in the fermiology of hole-doped cuprates via advanced time-resolved spectroscopies
通过先进的时间分辨光谱研究反铁磁涨落在空穴掺杂铜酸盐费米学中的作用
  • 批准号:
    578548-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Alliance Grants
Study of the role of antiferromagnetic fluctuations in the fermiology of hole-doped cuprates via advanced time-resolved spectroscopies
通过先进的时间分辨光谱研究反铁磁涨落在空穴掺杂铜酸盐费米学中的作用
  • 批准号:
    578548-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Alliance Grants
Advanced time-resolved optical sensing and imaging systems for biomedical and environmental applications
适用于生物医学和环境应用的先进时间分辨光学传感和成像系统
  • 批准号:
    RGPIN-2019-07127
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-Platform Homogeneous Multiplexed Autoantibody Assay Based on Liquid Micropiston-Enhanced Time-Resolved Forster Resonance Energy Transfer
基于液体微活塞增强时间分辨福斯特共振能量转移的多平台同质多重自身抗体测定
  • 批准号:
    10576777
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了