Applications of order convergence in Banach lattices

阶收敛在 Banach 格中的应用

基本信息

  • 批准号:
    RGPIN-2020-04855
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The proposal is in the theory of Banach and vector lattices. This is an area of Functional Analysis that focuses on partial order structures in Banach spaces. The proposal consists of several parts. 1. Uo-convergence (unbounded order convergence) is a derivative of order convergence. Its importance became clear after a recent series of papers where my collaborators and I established some properties that make uo-convergence an excellent tool for connecting Banach lattices with function spaces. This has led to applications to order closed convex sets, preduals of Banach lattices, and risk measures. I am going to further explore certain properties and applications of uo-convergence. J.Grobler and C.Labuschagne have recently developed several new techniques based on universal completions of vector lattices and used them to extend certain results of stochastic analysis to a vector lattice setting. I am going to explore the relationship between these techniques, uo--convergence, uo-dualss, and uo-completeness, and apply this to measure-free stochastic theory. I would also like to connect these techniques with D.Fremlin's representation of universally complete spaces as spaces of measurable functions on Boolean algebras. 3. Bibasic sequences. Basic sequences play a major role in the theory of Banach spaces. In an ongoing joint project with M.Taylor, we have been studying bibasic sequences, which are basic sequences in Banach lattices whose basis expansions converge not only in norm but also in order. We have established many exciting properties of such sequences. We proved that most classical basic sequences in Analysis are bibasic. I propose to further study bibasic sequences, as well as uo-bibasic sequences. In particular, I want to determine whether every closed sublattice of a Banach lattice contains a bibasic or a uo-bibasic sequence, and whether every order basic sequence in a sequentially order complete Banach lattice is (Schauder) basic. 4. Free Banach lattices. Free Banach lattices FBL(A) and FBL[E] have recently been constructed by B.de Pagter, A.Wickstead, A.Aviles, et al. They also found an explicit formula for the norm of FBL[E]. I found an alternative way of constructing FBL(A) and FBL[E] in [T3]. In an ongoing project with M.Taylor, P.Tradacete et al, we have used the approach of [T3] to construct free p-convex Banach lattices; we have also found a formula for its norm. I propose to work on several open questions related to FBL[E]; among others, whether the sequence (|xk|) is basic in FBL[E] whenever (xk) is basic in E. I propose to use the theory of p-multinorms to find an explicit formula for the norm of the free Banach lattice with the upper p-estimate. I am also interested in constructing free Banach lattice algebras. 5. I am going to complete writing a book about vector and Banach lattices.
该提议基于 Banach 和矢量格理论。这是泛函分析的一个领域,重点关注 Banach 空间中的偏序结构。该提案由几个部分组成。 1、Uo-收敛(无界阶收敛)是阶收敛的导数。在最近的一系列论文中,我和我的合作者建立了一些属性,这些属性使 uo 收敛性成为连接 Banach 格子和函数空间的绝佳工具,它的重要性变得清晰起来。这导致了排序闭凸集、Banach 格的 predual 和风险度量的应用。我将进一步探索 uo 收敛的某些属性和应用。 J.Grobler 和 C.Labuschagne 最近开发了几种基于向量格通用完成的新技术,并使用它们将随机分析的某些结果扩展到向量格设置。我将探索这些技术、uo-收敛、uo-对偶和 uo-完备性之间的关系,并将其应用于无测度随机理论。我还想将这些技术与 D.Fremlin 将普遍完备空间表示为布尔代数上可测量函数的空间联系起来。 3. 双基本序列。基本序列在巴纳赫空间理论中起着重要作用。在与 M.Taylor 正在进行的联合项目中,我们一直在研究双基序列,它们是 Banach 格中的基本序列,其基展开不仅在范数上收敛,而且按顺序收敛。我们已经确定了此类序列的许多令人兴奋的特性。我们证明了分析中的大多数经典基本序列都是双基的。我建议进一步研究双碱基序列以及双碱基序列。特别是,我想确定 Banach 格子的每个闭合子格子是否包含双基序列或 uo-bibasic 序列,以及顺序有序完整 Banach 格子中的每个基本序列是否是(Schauder)基本序列。 4.自由Banach格子。 B.de Pagter、A.Wickstead、A.Aviles 等人最近构造了自由 Banach 格子 FBL(A) 和 FBL[E]。他们还找到了 FBL[E] 范数的明确公式。我在 [T3] 中找到了构建 FBL(A) 和 FBL[E] 的替代方法。在与 M.Taylor、P.Tradacete 等人正在进行的项目中,我们使用 [T3] 的方法来构造自由 p 凸 Banach 格子;我们还找到了其范数的公式。我建议研究几个与 FBL[E] 相关的开放性问题;其中,只要 (xk) 在 E 中是基本的,序列 (|xk|) 在 FBL[E] 中是否是基本的。我建议使用 p-多范数理论来找到自由 Banach 格子范数的显式公式与较高的 p 估计值。我也对构造免费的巴纳赫格代数感兴趣。 5. 我将完成一本关于矢量和巴纳赫格的书。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Troitsky, Vladimir其他文献

Troitsky, Vladimir的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Troitsky, Vladimir', 18)}}的其他基金

Applications of order convergence in Banach lattices
阶收敛在 Banach 格中的应用
  • 批准号:
    RGPIN-2020-04855
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of order convergence in Banach lattices
阶收敛在 Banach 格中的应用
  • 批准号:
    RGPIN-2020-04855
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Banach lattices to operator theory and stochastic processes
Banach 格在算子理论和随机过程中的应用
  • 批准号:
    RGPIN-2015-04051
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Banach lattices to operator theory and stochastic processes
Banach 格在算子理论和随机过程中的应用
  • 批准号:
    RGPIN-2015-04051
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Banach lattices to operator theory and stochastic processes
Banach 格在算子理论和随机过程中的应用
  • 批准号:
    RGPIN-2015-04051
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Banach lattices to operator theory and stochastic processes
Banach 格在算子理论和随机过程中的应用
  • 批准号:
    RGPIN-2015-04051
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Banach lattices to operator theory and stochastic processes
Banach 格在算子理论和随机过程中的应用
  • 批准号:
    RGPIN-2015-04051
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Properties of certain classes of operators on Banach spaces
Banach 空间上某些类算子的性质
  • 批准号:
    311899-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Properties of certain classes of operators on Banach spaces
Banach 空间上某些类算子的性质
  • 批准号:
    311899-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Properties of certain classes of operators on Banach spaces
Banach 空间上某些类算子的性质
  • 批准号:
    311899-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

不确定非线性系统凸优化模糊自适应命令滤波反步控制及应用
  • 批准号:
    62303255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Order的SIS/LWE变体问题及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
针对动态无线充电系统的基于事件触发和命令滤波的保性能控制方法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
不确定非线性约束系统的有限时间命令滤波模糊控制
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
不同环境规制下绿色创新效应研究:微观机制与政策选择
  • 批准号:
    71903063
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
  • 批准号:
    2333724
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
  • 批准号:
    EP/Y002474/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
  • 批准号:
    2341000
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构​​化网格技术
  • 批准号:
    2348394
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了