The Statistical Mechanics of Lattice Models of Polymers

聚合物晶格模型的统计力学

基本信息

  • 批准号:
    RGPIN-2019-06303
  • 负责人:
  • 金额:
    $ 1.24万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Polymers appear in many different forms, namely as soft or hard solids, as liquids, glues, or melts, or as networks of covalently bonded monomers, or adsorbed onto a surface, or twisted and entangled in knotted conformations. Underlying this rich set of forms and thermodynamic phases is the notion of polymer entropy, which is related to the number of conformations of a polymer molecule. In this application I shall give an overview of my ongoing work in this field and explain several avenues for continuing my research program.  I will also explain the current involvement of students in my research program and their contributions, as well as future projects which are suitable for training students in Monte Carlo simulations and statistical mechanics. Polymer entropy was studied by Nobel prize winners Flory in the 1940s, and de Gennes in the 1970s. A rich mathematical theory to model the entropy of string-like objects was built on their work. This includes the self-avoiding walk and related models, directed path models in combinatorial mathematics, percolation, networks, as well as numerical methods including Monte Carlo methods. These models are ubiquitous in the statistical mechanics of random clusters and in the theory of phase transitions and are related to classical models of spin system models of magnetic materials.  This area of research straddles rigorous and applied statistical mechanics, combinatorial mathematics, probability theory, and mathematical physics. There is also a connection to experimental and theoretical polymer physics and chemistry.  Research in this area is important because it adds to the understanding of phase behaviour and scaling in models of interacting and dense polymers and on networks. Over the last cycle my students and I have worked on mean field scaling for networks in molecular biology and on a self-avoiding walk model of compressed dense polymers. With other collaborators I have worked on the phase diagrams of linear and branched polymers and on partition function zeros of adsorbing self-avoiding walks. My short term goals are to expand my research into the partition function zeros of models of self-avoiding walks and directed lattice paths, to apply Flory-Huggins theory (a theory of dense polymer solutions) to models of copolymer melts, and to perform simulations of lattice spin systems using the GARM algorithm.   In addition, I am investigating the phase diagram of pulled adsorbing models of branched polymers using self-avoiding walk models.  Studies on partition function zeros and models of dense polymers will be done with graduate students. The longer term goals are to consider the usefulness of Flory-Huggins theory in creating a framing for understanding the phase diagram of dense polymer systems on the one hand, and on the other hand to examine the mathematical properties of partition function zeros and the role they play in creating critical points in self-avoiding walk models of interacting polymers.
聚合物以许多不同的形式出现,即像柔软或硬固体一样,如液体,Glyces或融化或共价键合的单体的网络,或吸附在表面上,或在打结的会议上扭曲并纠缠在一起。这组丰富的形式和热力学相的基础是聚合物熵的概念,这与聚合物分子的会议数量有关。在此应用程序中,我将概述我在该领域正在进行的工作,并解释继续进行研究计划的几种途径。我还将解释学生当前参与我的研究计划及其贡献,以及未来的项目,这些项目适合培训蒙特卡洛模拟和统计力学的学生。 1940年代,诺贝尔奖获奖者Flory和1970年代的De Gennes对聚合物熵进行了研究。一个丰富的数学理论来建模类似字符串的对象的熵的作品。这包括避免自我的步行和相关模型,组合数学中的定向路径模型,渗透,网络以及包括蒙特卡洛方法在内的数值方法。这些模型在随机簇的统计力学和相变理论中无处不在,并且与磁性材料的自旋系统模型的经典模型有关。研究领域跨越了严格和应用的统计力学,组合数学,概率理论和数学物理学。还与实验和理论聚合物物理和化学有联系。在该领域的研究很重要,因为它增加了对相互作用和密集聚合物和网络模型中相位行为和缩放的理解。在最后一个周期中,我和我的学生研究了分子生物学网络的平均田间缩放,并为压缩致密聚合物的自我避免行走模型。与其他合作者,我曾在线性和分支聚合物的相图上以及吸附自我避免自我的步行的分区功能零。我的短期目标是将我的研究扩展到自我避免步行和定向晶格路径模型的分区功能零,以将Flory-Huggins理论(一种密集聚合物溶液理论)应用于共聚物融化的模型,并使用Garm Algorithm进行晶格旋转系统的模拟。此外,我正在研究使用自我避免行走模型的分支聚合物吸附模型的相图。有关分区功能零和密集聚合物模型的研究将与研究生进行。长期目标是考虑一方面,一方面,考虑创建框架来理解密集聚合物系统的相位图,另一方面,以研究分区功能零的数学属性及其在创建中所扮演的作用。相互作用聚合物的自我避免步行模型的关键点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JansevanRensburg, Esaias其他文献

JansevanRensburg, Esaias的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JansevanRensburg, Esaias', 18)}}的其他基金

The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
  • 批准号:
    RGPIN-2019-06303
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
  • 批准号:
    RGPIN-2019-06303
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
  • 批准号:
    RGPIN-2014-04731
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
  • 批准号:
    RGPIN-2014-04731
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
  • 批准号:
    RGPIN-2014-04731
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
  • 批准号:
    RGPIN-2014-04731
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
  • 批准号:
    RGPIN-2014-04731
  • 财政年份:
    2014
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
The statistical mechanics of lattice paths and lattice walk models of polymers
聚合物晶格路径和晶格行走模型的统计力学
  • 批准号:
    122237-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
The statistical mechanics of lattice paths and lattice walk models of polymers
聚合物晶格路径和晶格行走模型的统计力学
  • 批准号:
    122237-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
The statistical mechanics of lattice paths and lattice walk models of polymers
聚合物晶格路径和晶格行走模型的统计力学
  • 批准号:
    122237-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于格子Boltzmann异构并行计算的碎屑流非稳态动力学模型研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于格子Boltzmann异构并行计算的碎屑流非稳态动力学模型研究
  • 批准号:
    42107154
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
高导热微米级非磁性颗粒强化磁流体换热机理研究
  • 批准号:
    11902135
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于离散统一气体动力学的纳米颗粒分形团聚体多尺度流动直接数值模拟
  • 批准号:
    51906044
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
电场强化固液相变传热介观建模及机理研究
  • 批准号:
    51906051
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
  • 批准号:
    RGPIN-2019-06303
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
  • 批准号:
    RGPIN-2019-06303
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
  • 批准号:
    RGPIN-2019-06303
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
A unified understanding of mechanical properties of solids from the viewpoint of universal statistical properties related to collective motion of defects
从与缺陷集体运动相关的通用统计特性的角度对固体力学特性的统一理解
  • 批准号:
    17K06049
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analyses of Lattice Defect Behavior in Steels with Simple Composition under Hydrogen Environment Using Statistical-thermodynamically Defined Initial State
使用统计热力学定义的初始状态分析氢环境下简单成分钢的晶格缺陷行为
  • 批准号:
    16K05976
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了