Existence and blowup of solutions for nonlinear evolution equations and their numerical computations

非线性演化方程解的存在性、爆炸性及其数值计算

基本信息

  • 批准号:
    RGPIN-2019-05940
  • 负责人:
  • 金额:
    $ 1.24万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Nonlinear evolution equations have many applications in descriptions of various models, such as reaction-diffusion, activator-inhibitor, fluid and quantum mechanics and population biology. Many equations involve degenerate or singular terms and some kinds of blow-up properties which cause many challenging problems in global, blow-up and numerical computations. The objectives of this research program are to investigate the properties of global and blow-up solutions for nonlinear evolution equations both theoretically and numerically, including convergence to steady states. The expected results will include: 1.Introduce a new functional method to discuss the global and blow-up solutions for the compressible Euler equations with variable damping coefficient. Also study the asymptotic behaviors, blow-up rate and blow-up time and steady states to the equations. 2.Investigate the existence and blow-up of solutions to higher order nonlinear Schrodinger equations. 3.Modify the existing algorithms for moving mesh methods and other adaptive grid methods to numerically solve compressible Euler equations, higher order nonlinear Schrodinger equations and some complicated equations, such as the equations whose solutions blow up at space infinity. Also develop a moving mesh scheme to simulate asymptotic behaviours in an unbounded domain. 4.Deal with a class of more general quasi-linear parabolic and hyperbolic systems to find sufficient conditions on initial data to deduce global existence and blow-up properties both theoretically and numerically. The new functional method is a very powerful method to obtain a priori estimate for elliptic and parabolic equations and will be introduced to hyperbolic equations. In the functional method, we consider an integral of nth power of several solutions. Taking derivatives with respect to t and integrating by parts we obtain a differential inequality. To my knowledge, if super- and sub-solution methods can be applied to a system, then the functional method can also be applied to the system. However, the functional method only requires weaker conditions. To obtain a numerical solution in an unbounded domain, we first map the unbounded domain into a bounded domain and change equations with some kind of singularity. Then use moving mesh method to reduce errors near the singularity. The numerical solutions also serve as a guide showing when the solutions blow up, exist globally or approach a steady state.
非线性演化方程在各种模型的描述中具有许多应用,例如反应扩散、激活剂-抑制剂、流体和量子力学以及群体生物学,许多方程涉及简并项或奇异项以及某些类型的爆炸特性,这会导致许多具有挑战性的问题。该研究项目的目标是从理论上和数值上研究非线性演化方程的全局和爆炸解的性质,包括收敛到稳态的预期结果。将包括: 1.引入一种新的函数方法来讨论具有可变阻尼系数的可压缩欧拉方程的全局解和爆炸解,并研究方程的渐近行为、爆炸速率和爆炸时间以及稳态。 2.研究高阶非线性薛定谔方程解的存在性和爆炸性。 3.修改移动网格方法和其他自适应网格方法的现有算法,以数值求解可压缩欧拉方程、更高阶方程。阶非线性薛定谔方程和一些复杂方程,例如解在无限远空间爆炸的方程。还开发一个移动网格方案来模拟无界域中的渐近行为。 4.处理一类更一般的拟线性抛物线和双曲系统在初始数据上找到足够的条件,以从理论上和数值上推论全局存在性和爆炸特性。新的泛函方法是获得椭圆形和抛物线形先验估计的非常强大的方法。方程并将被引入到双曲方程中,我们考虑对 t 求导数并按部分积分,我们得到微分不等式。 -解方法可以应用于系统,那么泛函方法也可以应用于系统,但是泛函方法只需要较弱的条件,要获得无界域中的数值解,我们首先将无界域映射到一个。有界域和变化方程然后使用移动网格方法来减少奇点附近的误差。数值解也可以作为解爆炸、全局存在或接近稳态的指导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chen, Shaohua其他文献

Upregulated TCRζ Enhances Interleukin-2 Production in T-Cells from Patients with CML
  • DOI:
    10.1089/dna.2012.1798
  • 发表时间:
    2012-11-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Zha, Xianfeng;Chen, Shaohua;Li, Yangqiu
  • 通讯作者:
    Li, Yangqiu
Clinical predictor of postoperative hyperkalemia after parathyroidectomy in patients with hemodialysis
  • DOI:
    10.1016/j.ijsu.2018.03.003
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
    15.3
  • 作者:
    Li, Sijia;Liu, Shuangxin;Chen, Shaohua
  • 通讯作者:
    Chen, Shaohua
Recent Strengthening of the Relationship between the Western North Pacific Monsoon and Western North Pacific Tropical Cyclone Activity during the Boreal Summer
最近北半球夏季西北太平洋季风与西北太平洋热带气旋活动之间关系的加强
  • DOI:
    10.1175/jcli-d-19-0016.1
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Zhao, Haikun;Chen, Shaohua;Klotzbach, Philip J.
  • 通讯作者:
    Klotzbach, Philip J.
Interactions among low-molecular-weight organics, heavy metals, and Fe(III) during coagulation of landfill leachate nanofiltration concentrate
  • DOI:
    10.1016/j.wasman.2020.01.015
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Chu, Dongyuan;Ye, Zhi-Long;Chen, Shaohua
  • 通讯作者:
    Chen, Shaohua
Probing End-to-End Cyclization beyond Willemski and Fixman
  • DOI:
    10.1021/jp109528h
  • 发表时间:
    2011-04-07
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Chen, Shaohua;Duhamel, Jean;Winnik, Mitchell A.
  • 通讯作者:
    Winnik, Mitchell A.

Chen, Shaohua的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chen, Shaohua', 18)}}的其他基金

Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization and Simulation Studies of a Production System for Ventilators to Mitigate Challenges of COVID-19 Pandemic
呼吸机生产系统的优化和模拟研究,以缓解 COVID-19 大流行的挑战
  • 批准号:
    555178-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Alliance Grants
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物型系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物型系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2014
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Blowup solutions for nonlinear evolution equations and their numerical computations with moving mesh methods
非线性演化方程的爆炸解及其动网格法数值计算
  • 批准号:
    251200-2002
  • 财政年份:
    2005
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

高压加氢装备橡胶密封氢致空穴萌生与演化行为及爆炸减压损伤机制
  • 批准号:
    52375211
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高原恶劣环境高性能橡胶集料混凝土设计构筑与爆炸毁伤机理
  • 批准号:
    12372339
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
爆炸-火灾耦合作用下预压装配式结构连续倒塌机理及鲁棒性评估
  • 批准号:
    52378143
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
矿井瓦斯爆炸冲击破坏特性及诱导煤尘爆炸机理研究
  • 批准号:
    52374203
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
典型合金粉尘-氢气-空气混合爆炸组分间相互作用机制研究
  • 批准号:
    12302448
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    571735-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    University Undergraduate Student Research Awards
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    561540-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    University Undergraduate Student Research Awards
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了