Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
基本信息
- 批准号:RGPIN-2019-04269
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overarching goal of my research program is to solve a number of long standing open problems in the intersection of theoretical computer science, graph theory, and probability theory. A commonality between the proposed topics is the use of probabilistic techniques. More precisely, my proposed research program focuses on the following areas. (Objective 1) Randomized algorithms. Although counting the number of proper k-colourings of a graph is a computationally hard problem, Jerrum, Valiant, and Vazirani showed that a nearly uniform sampler gives rise to an approximate enumeration, motivating the question of finding an algorithm to efficiently generate uniformly random proper colourings of a graph; this is a central topic in both computer science and statistical physics. My colleagues and I made a recent breakthrough, the first progress on the most important question in this area in 19 years. My students and I will push this approach further, both working on the fundamental problem for Glauber dynamics and using similar techniques to bound the mixing time of other Markov chains as well. (Objective 2) Random regular graphs. A question that has attracted much interest in graph theory is: under what conditions can we partition the edge set of a graph into edge disjoint copies of a subgraph? This is fundamentally related to some of the most notorious open areas of research such as finding orientations of certain types, nowhere-zero flows, and colourings of planar graphs. A key new insight is that moving long standing problems from structural graph theory to the random regular setting can provide additional machinery and help to shed light on classical, longstanding problems. For instance using probabilistic techniques, a coauthor and I recently showed that a random 4-regular graph has a decomposition into 3-stars asymptotically almost surely. An important line of research with far reaching applications is generalizing this result in various ways. My students and I will pursue developing methods for k-stars in d-regular random graphs as well as decompositions into other trees. (Objective 3) Computational geometry. An active line of inquiry in combinatorics in recent years has been extending classical results to the so-called sparse random setting, where the goal is to show that certain known properties of "dense" combinatorial structures are inherited by their randomly chosen "sparse" substructures. In this spirit my team and I will develop an algorithmic approach that shows if a given algebraic hypergraph is "dense" in a certain sense, then a generic low-dimensional subset of the vertices induces a subhypergraph that is also "dense." Such results have applications in computational geometry and matroid theory. My team and I will also establish a natural generalization of the classical dimension of fibers theorem in algebraic geometry, a result interesting in its own right.
我的研究计划的总体目标是解决理论计算机科学、图论和概率论交叉领域中的一些长期存在的开放性问题。更准确地说,我提出的主题的共同点是使用概率技术。研究计划重点关注以下领域。(目标 1)Jerrum、Valiant 和 Vazirani 表示,尽管计算图的正确 k 着色数是一个计算难题。几乎均匀的采样器会产生近似枚举,从而激发了寻找一种算法来有效生成图形的均匀随机适当着色的问题;这是我和我的同事最近提出的一个中心主题。这是 19 年来该领域最重要问题的首次进展,我和我的学生将进一步推动这一方法,既致力于解决格劳伯动力学的基本问题,又使用类似的技术来限制其他问题的混合时间。 (目标 2)随机正则图。图论中引起人们极大兴趣的一个问题是:在什么条件下我们可以将图的边集划分为子图的边不相交副本?一些最臭名昭著的开放研究领域,例如寻找某些类型的方向、无处零流和平面图的着色,一个关键的新见解是将长期存在的问题从结构图论转移到随机规则设置可以提供额外的帮助。机械并帮助阐明经典的、长期存在的问题,例如,我和一位合著者最近证明,随机 4 正则图几乎可以肯定地分解为 3 星,这是一项具有深远应用的重要研究方向。我和我的学生将致力于开发 d 正则随机图中的 k 星以及分解为其他树的方法。 3)计算几何近年来,组合学领域的一个活跃研究方向是将经典结果扩展到所谓的稀疏随机设置,其目标是证明“密集”组合结构的某些已知属性是通过其随机继承的。本着这种精神,我和我的团队将开发一种算法方法,显示给定的代数超图在某种意义上是否是“稠密”的,然后是通用的。顶点的低维子集会产生一个同样“稠密”的子超图。这样的结果在计算几何和拟阵理论中也有应用,我和我的团队还将建立代数几何中纤维定理的经典维数的自然推广。结果本身就很有趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Delcourt, Michelle其他文献
Independent sets in algebraic hypergraphs
代数超图中的独立集
- DOI:
10.4171/jems/1082 - 发表时间:
2022 - 期刊:
- 影响因子:2.6
- 作者:
Bernshteyn, Anton;Delcourt, Michelle;Tserunyan, Anush - 通讯作者:
Tserunyan, Anush
Generalized rainbow Turán numbers of odd cycles
奇数周期的广义彩虹图兰数
- DOI:
10.1016/j.disc.2021.112663 - 发表时间:
2022 - 期刊:
- 影响因子:0.8
- 作者:
Balogh, József;Delcourt, Michelle;Heath, Emily;Li, Lina - 通讯作者:
Li, Lina
Delcourt, Michelle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Delcourt, Michelle', 18)}}的其他基金
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
DGECR-2019-00092 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Launch Supplement
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于随机化的高效可扩展深度学习算法研究
- 批准号:62376131
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
随机矩阵算法及其去随机化的研究
- 批准号:62372424
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于贝叶斯理论和深度神经网络模型的非线性孟德尔随机化工具变量算法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于随机化方法的量化神经网络训练理论及算法研究
- 批准号:62106120
- 批准年份:2021
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于神经网络权值随机化的模型选择和学习算法的理论研究
- 批准号:61806162
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Concomitant use of antidepressants and oral antidiabetic drugs and the risk of hypoglycemia
抗抑郁药和口服抗糖尿病药的同时使用和低血糖的风险
- 批准号:
10679095 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Concomitant use of antidepressants and oral antidiabetic drugs and the risk of hypoglycemia
抗抑郁药和口服抗糖尿病药的同时使用和低血糖的风险
- 批准号:
10526807 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Using Machine Learning with Real-World Data to Identify Autism Risk in Children
使用机器学习和真实世界数据来识别儿童自闭症风险
- 批准号:
10591514 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Enhancing the Efficiency of Pragmatic Clinical Trials Using Administrative Data: Analysis of the STRIDE Study
使用管理数据提高实用临床试验的效率:STRIDE 研究分析
- 批准号:
10588255 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别: