Artificial Intelligence-Aided Digital Forensics Examination
人工智能辅助数字取证检查
基本信息
- 批准号:RGPIN-2019-03995
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
People who investigate cybercrimes have an increasingly large and complex pool of data to sift through, from encrypted communication and social media interactions to data stored on internet of things devices. The current intensive and manual approaches for searching and analyzing digital evidence are not capable of dealing with the increased complexity of digital forensics. Cybercrimes investigators must reason and discover over a large amount of sophisticated data in a relatively short time frame. While artificial intelligence (AI) has a lot to offer to the digital forensics community, AI utilization in digital forensics is still at a very early stage. The long-term goal of my research program is to build an autonomous AI-based system to detect artefacts of interest from all sources of data and analyze them as required. Given the current state of AI-based digital investigation systems, the near-term goal of this program is to build a representation of information into a "smart system" to record, reason about, and exchange information of investigation cases and to detect artefacts of forensics value from complex and uncertain data. The near-term objectives that are pursued in this program are: 1) building a representation of properties of digital evidence suitable for recording, reasoning about, and exchanging information of investigation cases; 2) using AI to automate components of an investigation process such as looking for a particular file, event or log over complex and uncertain datasets; and 3) building AI-based decision-making support systems that suggest the best courses of action in collaborative and mission critical investigation tasks. The research will contribute to the field in the following ways: 1) it will provide a formal and structured representation of knowledge in the digital forensics domain, which is currently limiting information and evidence exchange activities in the field; 2) it will result in creation of fuzzy deep learning AI agents capable of discovering relevant evidence from complex and encrypted data in a timely manner, overcoming limitations of current technology; and 3) it will result in an intuitive multi-criteria fuzzy decision-making support system that is capable of guiding investigators with variety of goals and priorities to take best courses of action. The proposed research will help Canada to establish its leadership in AI and digital forensics and trains at least 8 HQPs who help meet Canada's demand for digital investigators and AI experts. We will create large and re-usable repositories of digital investigation cases which provide a reusable collection of background knowledge for both human and AI agents. Moreover, as most of digital examination cases are collaborative and mission critical tasks, the ability to reason about evidence discovery and analysis process and knowing the best follow-up activities, would assist investigators to make rapid and informed decisions.
调查网络犯罪的人员需要筛选越来越庞大和复杂的数据池,从加密通信和社交媒体交互到存储在物联网设备上的数据。当前用于搜索和分析数字证据的密集和手动方法无法应对数字取证日益增加的复杂性。网络犯罪调查人员必须在相对较短的时间内推理和发现大量复杂数据。虽然人工智能 (AI) 可以为数字取证社区提供很多帮助,但人工智能在数字取证中的应用仍处于非常早期的阶段。 我的研究计划的长期目标是建立一个基于人工智能的自主系统,从所有数据源中检测感兴趣的文物并根据需要进行分析。鉴于基于人工智能的数字调查系统的现状,该计划的近期目标是将信息表示构建到“智能系统”中,以记录、推理和交换调查案件的信息,并检测案件的伪影。复杂和不确定数据的取证价值。该计划追求的近期目标是:1)建立适合记录、推理和交换调查案件信息的数字证据属性的表示; 2) 使用人工智能实现调查过程的自动化,例如在复杂且不确定的数据集上查找特定文件、事件或日志; 3) 构建基于人工智能的决策支持系统,为协作和关键任务调查任务提出最佳行动方案。该研究将通过以下方式对该领域做出贡献:1)它将提供数字取证领域知识的正式和结构化表示,这目前限制了该领域的信息和证据交换活动; 2)它将导致创建模糊深度学习人工智能代理,能够及时从复杂和加密的数据中发现相关证据,克服当前技术的局限性; 3)它将产生一个直观的多标准模糊决策支持系统,能够指导具有各种目标和优先事项的调查人员采取最佳行动方案。拟议的研究将帮助加拿大确立其在人工智能和数字取证领域的领导地位,并培训至少 8 名总部人员,帮助满足加拿大对数字调查员和人工智能专家的需求。我们将创建大型且可重复使用的数字调查案例存储库,为人类和人工智能代理提供可重复使用的背景知识集合。此外,由于大多数数字检查案例都是协作和关键任务,因此推理证据发现和分析过程并了解最佳后续活动的能力将有助于调查人员做出快速、明智的决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dehghantanha, Ali其他文献
CloudMe forensics: A case of big data forensic investigation
- DOI:
10.1002/cpe.4277 - 发表时间:
2018-03-10 - 期刊:
- 影响因子:2
- 作者:
Teing, Yee-Yang;Dehghantanha, Ali;Choo, Kim-Kwang Raymond - 通讯作者:
Choo, Kim-Kwang Raymond
Leveraging Support Vector Machine for Opcode Density Based Detection of Crypto-Ransomware
- DOI:
10.1007/978-3-319-73951-9_6 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:0
- 作者:
Baldwin, James;Dehghantanha, Ali - 通讯作者:
Dehghantanha, Ali
A Multilabel Fuzzy Relevance Clustering System for Malware Attack Attribution in the Edge Layer of Cyber-Physical Networks
- DOI:
10.1145/3351881 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:2.3
- 作者:
Alaeiyan, Mohammadhadi;Dehghantanha, Ali;Parsa, Saeed - 通讯作者:
Parsa, Saeed
An ensemble deep federated learning cyber-threat hunting model for Industrial Internet of Things
- DOI:
10.1016/j.comcom.2022.11.009 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:6
- 作者:
Jahromi, Amir Namavar;Karimipour, Hadis;Dehghantanha, Ali - 通讯作者:
Dehghantanha, Ali
Detecting crypto-ransomware in IoT networks based on energy consumption footprint
- DOI:
10.1007/s12652-017-0558-5 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:0
- 作者:
Azmoodeh, Amin;Dehghantanha, Ali;Choo, Kim-Kwang Raymond - 通讯作者:
Choo, Kim-Kwang Raymond
Dehghantanha, Ali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dehghantanha, Ali', 18)}}的其他基金
Artificial Intelligence-Aided Digital Forensics Examination
人工智能辅助数字取证检查
- 批准号:
RGPIN-2019-03995 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Cyber Security and Threat Intelligence
网络安全和威胁情报
- 批准号:
CRC-2019-00005 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
A Robust Malware Threat Hunting System and Method based on Deep Neural Networks in IoT environments
物联网环境中基于深度神经网络的鲁棒恶意软件威胁追踪系统和方法
- 批准号:
571262-2022 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Idea to Innovation
Cyber Security And Threat Intelligence
网络安全和威胁情报
- 批准号:
CRC-2019-00005 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Cyber Security and Threat Intelligence
网络安全和威胁情报
- 批准号:
1000233039-2019 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Canada Research Chairs
Artificial Intelligence-Aided Digital Forensics Examination
人工智能辅助数字取证检查
- 批准号:
RGPIN-2019-03995 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence-Aided Digital Forensics Examination
人工智能辅助数字取证检查
- 批准号:
RGPIN-2019-03995 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence-Aided Digital Forensics Examination
人工智能辅助数字取证检查
- 批准号:
DGECR-2019-00100 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
染色质重塑子对儿童智力发育障碍的机制研究及诊断标志物探索
- 批准号:82330049
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
基于轴突密度纵向分析智力障碍患儿语言功能康复中双流语言网络可塑性机制的MRI-NODDI研究
- 批准号:82360337
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
KCNQ2基因变异导致智力障碍的致病机制研究
- 批准号:82301347
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新烟碱类农药通过肠道菌群影响儿童智力发育的机制研究
- 批准号:22366007
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
ARID1B突变引起H3K4me3水平异常导致智力障碍的机制与治疗研究
- 批准号:82302082
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Artificial Intelligence(AI)-Aided Photon Counting Detection in Optical Wireless Communications
光无线通信中的人工智能 (AI) 辅助光子计数检测
- 批准号:
23K13332 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Computer-aided detection chest X-ray findings in people with culture-confirmed pulmonary tuberculosis versus non-tuberculous mycobacteria infection in a low-TB incidence setting
低结核病发病率环境中经培养确诊的肺结核患者与非结核分枝杆菌感染患者的计算机辅助检测胸部 X 线检查结果
- 批准号:
481014 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Human-centered CT-based CADx Tools for Traumatic Torso Hemorrhage
以人为中心、基于 CT 的 CADx 工具,用于治疗躯干外伤出血
- 批准号:
10566836 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
ERI: An Artificial Intelligence-based Computer Aided Manufacturing Framework for Hybrid Manufacturing
ERI:基于人工智能的混合制造计算机辅助制造框架
- 批准号:
2301725 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant