Numerical modelling of indoor environment for energy-efficient bio-manufacturing facilities
节能生物制造设施室内环境数值模拟
基本信息
- 批准号:570405-2021
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Aspire Food Group begins constructing the world's largest cricket farm in London, Ontario. This facility will have a smart farming by deploying a proprietary sensor, autonomous robotics, centralized distribution systems, and custom assemblies to farm insects from hatch to harvest. Controlling the complex facility systematically in real-time elevates the success of the farming technology. The main anticipated challenge is to model, simulate, collect data, and predict the optimum indoor environment of the farm facility that contains around 95,000 cubic meter of plastic totes storage, which houses crickets, their food, and water. The crickets stay in the container from hatch to harvest for 28 days under a controlled environment in a very densely packed space. Considering the size and density of the facility, ensuring air circulation around all the totes, providing enough oxygen, controlling temperature and relative humidity for optimal productivity is the challenging part of the project. The cricket's respiratory system and drinking water produce a large amount of humidity inside the facility, hence dehumidifying the indoor condition consumes high electric energy. Further, due to the outdoor climate, energy constraint, and air filtration process to maintain the required air quality, there is a limitation on the implementation of natural ventilation and maintenance of the zero-waste system. Therefore, this research study endeavors to provide high-performance-computing-based Computational fluid dynamics (CFD) modelling and simulation of indoor temperature and airflow to provide input that will be useful for determining optimal livable condition for the insects from hatch to harvest. This modeling and simulation will be used to identify the optimal location of temperature, oxygen level detectors, and relative humidity control sensors that will be used to monitor the environment during the operation of the facility. This research will pave the ground for creating a digital twin of the smart-farming in the future by combining Building Information Modeling integrated CFD, with sensor technology and internet-of-things (IoT), which can be beneficial to control and monitor the temperature, airflow, and humidity of the farm real time.
Aspire Food Group 开始在安大略省伦敦建造世界上最大的蟋蟀农场。该设施将通过部署专有传感器、自主机器人、集中分配系统和定制组件来实现从孵化到收获的昆虫农场的智能农业。实时系统地控制复杂的设施可以提高农业技术的成功率。预期的主要挑战是建模、模拟、收集数据并预测农场设施的最佳室内环境,该农场设施包含约 95,000 立方米的塑料袋储存室,里面存放着蟋蟀及其食物和水。从孵化到收获,蟋蟀在容器内一个非常密集的受控环境中停留了 28 天。考虑到设施的尺寸和密度,确保所有手提箱周围的空气流通、提供足够的氧气、控制温度和相对湿度以实现最佳生产力是该项目具有挑战性的部分。蟋蟀的呼吸系统和饮用水在设施内产生大量的湿度,因此对室内除湿需要消耗大量电能。此外,由于室外气候、能源限制以及维持所需空气质量的空气过滤过程,自然通风的实施和零废物系统的维护受到限制。因此,本研究致力于提供基于高性能计算的计算流体动力学 (CFD) 建模和室内温度和气流模拟,为确定昆虫从孵化到收获的最佳生存条件提供有用的输入。这种建模和模拟将用于确定温度、氧气水平探测器和相对湿度控制传感器的最佳位置,这些传感器将用于在设施运行期间监测环境。这项研究将建筑信息模型集成 CFD 与传感器技术和物联网 (IoT) 相结合,为未来创建智能农业的数字孪生奠定基础,这有利于控制和监测温度农场实时的、气流和湿度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bitsuamlak, Girma其他文献
Bitsuamlak, Girma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bitsuamlak, Girma', 18)}}的其他基金
Novel computational and experimental wind engineering approaches for community level performance assessment
用于社区级绩效评估的新型计算和实验风工程方法
- 批准号:
RGPIN-2018-05454 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Novel computational and experimental wind engineering approaches for community level performance assessment
用于社区级绩效评估的新型计算和实验风工程方法
- 批准号:
RGPIN-2018-05454 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Novel computational and experimental wind engineering approaches for community level performance assessment
用于社区级绩效评估的新型计算和实验风工程方法
- 批准号:
RGPIN-2018-05454 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Novel computational and experimental wind engineering approaches for community level performance assessment
用于社区级绩效评估的新型计算和实验风工程方法
- 批准号:
RGPIN-2018-05454 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Novel computational and experimental wind engineering approaches for community level performance assessment
用于社区级绩效评估的新型计算和实验风工程方法
- 批准号:
RGPIN-2018-05454 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Novel computational and experimental wind engineering approaches for community level performance assessment
用于社区级绩效评估的新型计算和实验风工程方法
- 批准号:
RGPIN-2018-05454 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Novel computational and experimental wind engineering approaches for community level performance assessment
用于社区级绩效评估的新型计算和实验风工程方法
- 批准号:
DGDND-2018-05454 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
DND/NSERC Discovery Grant Supplement
相似国自然基金
产能共享背景下的制造型企业运营决策研究:基于信息共享与数据质量的视角
- 批准号:72271252
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
构造型深部岩体动力灾害的孕育和发生全过程机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
几何造型与机器学习融合的图像数据拟合问题研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
定制亲疏油图案与仿生微造型耦合的复合沟槽阵列表面润滑增效机理及应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
盾构主轴承激光微造型协同相变硬化的抗疲劳机理及主动设计
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
砂州地形の撹乱を維持するための流砂の量的・質的管理と河川構造物の効果的配置
流沙的定量和定性管理以及河流建筑物的有效放置以维持沙洲地形的干扰
- 批准号:
22K04334 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CFD modelling of indoor aerosol transport based on experimental Lagrangian particle tracking measurements to infer airborne SARS-CoV-2 transmission risk
基于实验性拉格朗日粒子跟踪测量的室内气溶胶输送 CFD 建模,以推断空气中 SARS-CoV-2 的传播风险
- 批准号:
469077966 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Research Grants
Predicting airborne pathogen spread:a modelling tool to asse ss the resilience of indoor spaces
预测空气传播的病原体传播:评估室内空间弹性的建模工具
- 批准号:
2599101 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Studentship
Improving indoor positioning accuracy in dynamic environments using semantics-based location knowledge modelling and probabilistic data analytics
使用基于语义的位置知识建模和概率数据分析提高动态环境中的室内定位精度
- 批准号:
507261-2016 - 财政年份:2016
- 资助金额:
$ 2.19万 - 项目类别:
Engage Grants Program
Improving indoor positioning accuracy in dynamic environments using semantics-based location knowledge modelling and probabilistic data analytics
使用基于语义的位置知识建模和概率数据分析提高动态环境中的室内定位精度
- 批准号:
507261-2016 - 财政年份:2016
- 资助金额:
$ 2.19万 - 项目类别:
Engage Grants Program