Modular injectable scaffolds for cell therapy and 3D bioprinting
用于细胞治疗和 3D 生物打印的模块化可注射支架
基本信息
- 批准号:RGPIN-2020-06684
- 负责人:
- 金额:$ 4.01万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The present research program aims to develop biomaterials scaffolds as engineering tools to improve the efficacy of cell therapy. Cell therapy consists in the transplantation of cells into patients and can be used to treat many diseases or repair tissues. However injected cells dye rapidly or are flushed from the tissue. Cell encapsulation in hydrogel scaffolds has the potential to improve cell therapy outcomes by enhancing cell viability and retention at the delivery site, but ideal scaffold are still missing. Moreover, the scaffold parameters that influence the survival and ability of cells to migrate towards the targeted tissue are still poorly understood.
In the recent years, the candidate has been developing biodegradable in situ gelling hydrogels with enhanced mechanical properties and excellent cytocompatibility. Cells can be mixed to the pre-hydrogel solution when still liquid at room temperature and injected by needle or catheter. A cohesive gel rapidly form in vivo. The present project aims to further improve these injectable cell carriers, namely by improving cell microenvironment, facilitating oxygen diffusion to the cells and increasing their adhesion to the target tissues.
The main approaches will consist in 1) the incorporation of extracellular matrix compounds into hydrogels to better reproduce normal cell-tissue interactions 2) the development of void-forming (macroporous) scaffolds using rapidly biodegradable microspheres, and 3) the fabrication of cell-carriers in the form of microspheres that can self-assemble in vivo. We hypothesize that compared to encapsulation in large hydrogel volumes, encapsulation in microspheres will improve oxygen diffusion to the cells, facilitate cell escape and eventually promote formation of blood vessel network that will provide oxygen and nutrients to the cells. We will also optimize the microencapsulation process to allow endothelial cells adhesion on the surface and thus accelerate the formation of a perfusable vascular network.
In addition, we will optimize these injectable hydrogels as bioinks for 3D bioprinting. This additive manufacturing process allows to form tissue-like structures with controlled heterogeneity and personalized geometry, which can be used as 3D in vitro models, or as implantable scaffolds. However only a few bioinks are available and most of them are based on the non-biodegradable alginate. In this project, we will propose new bioinks based on chitosan- methacrylated gelatin interpenetrating networks.
These new injectable modular cell carriers will offer many opportunities as tools for cell therapy and formation of 3D models and will bring significant knowledge on the factors influencing the success of cell carrier for cell therapy. A final benefit is the training of high-quality, highly qualified personnel (HQP) in this important field at the frontier between biomaterials science, rheology, mechanical engineering and biology.
本研究计划旨在开发生物材料脚手架作为工程工具,以提高细胞疗法的功效。细胞疗法包括将细胞移植到患者中,可用于治疗许多疾病或修复组织。然而,注射的细胞迅速染色或从组织中冲洗。水凝胶支架中的细胞封装有可能通过增强递送部位的细胞活力和保留率来改善细胞治疗结果,但理想的支架仍然缺失。此外,影响细胞向目标组织迁移的生存和能力的脚手架参数仍然很少了解。
近年来,候选人一直在开发具有具有增强机械性能和出色细胞相置性的原位原位胶凝水凝胶。当仍在室温下液体并用针头或导管注入时,可以将细胞混合到前凝胶溶液中。在体内迅速形成粘性凝胶。本项目的目的是通过改善细胞微环境,促进对细胞的氧扩散并增加对靶组织的粘附力来进一步改善这些可注射的细胞载体。
主要方法将包括1)将细胞外基质化合物掺入水凝胶中,以更好地再现正常的细胞 - 组织相互作用2)使用快速生物降解的微球的空隙形成(宏观)支架的发展,以及3)3)在微球形式的形式中,可以自我组成的组合形式的细胞携带者。我们假设,与大型水凝胶体积的封装相比,微球中的封装将改善对细胞的氧扩散,促进细胞逸出,并最终促进血管网络的形成,从而为细胞提供氧气和养分。我们还将优化微囊化过程,以使内皮细胞在表面上粘附,从而加速灌注可灌注的血管网络。
此外,我们将优化这些可注射的水凝胶作为3D生物打印的生物键。这种添加剂制造过程允许形成具有控制的异质性和个性化几何形状的组织样结构,可以用作3D体外模型或可植入的脚手架。但是,只有少数生物界可用,其中大多数基于不可生物降解的藻酸盐。在这个项目中,我们将基于壳聚糖的明胶互穿网络提出新的生物学。
这些新的可注射模块化细胞载体将为细胞疗法和形成3D模型提供许多机会,并将为影响细胞载体成功用于细胞疗法的因素带来重要的知识。最终的好处是在生物材料科学,流变学,机械工程和生物学之间的边界的这一重要领域中培训高质量,高素质的人员(HQP)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lerouge, Sophie其他文献
Injectable Chitosan Hydrogels with Enhanced Mechanical Properties for Nucleus Pulposus Regeneration
- DOI:
10.1089/ten.tea.2018.0170 - 发表时间:
2018-11-09 - 期刊:
- 影响因子:4.1
- 作者:
Alinejad, Yasaman;Adoungotchodo, Atma;Lerouge, Sophie - 通讯作者:
Lerouge, Sophie
A new radiopaque embolizing agent for the treatment of endoleaks after endovascular repair: Influence of contrast agent on chitosan thermogel properties
- DOI:
10.1002/jbm.b.32828 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:3.4
- 作者:
Coutu, Jean-Michel;Fatimi, Ahmed;Lerouge, Sophie - 通讯作者:
Lerouge, Sophie
Injectable, strong and bioadhesive catechol-chitosan hydrogels physically crosslinked using sodium bicarbonate
- DOI:
10.1016/j.msec.2020.111529 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:7.9
- 作者:
Guyot, Capucine;Cerruti, Marta;Lerouge, Sophie - 通讯作者:
Lerouge, Sophie
Chondroitin Sulfate and Epidermal Growth Factor Immobilization after Plasma Polymerization: A Versatile Anti-Apoptotic Coating to Promote Healing Around Stent Grafts
- DOI:
10.1002/mabi.201100447 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:4.6
- 作者:
Charbonneau, Cindy;Ruiz, Juan-Carlos;Lerouge, Sophie - 通讯作者:
Lerouge, Sophie
Optimization and characterization of injectable chitosan-iodixanol-based hydrogels for the embolization of blood vessels
- DOI:
10.1002/jbm.b.33500 - 发表时间:
2016-11-01 - 期刊:
- 影响因子:3.4
- 作者:
Fatimi, Ahmed;Zehtabi, Fatemeh;Lerouge, Sophie - 通讯作者:
Lerouge, Sophie
Lerouge, Sophie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lerouge, Sophie', 18)}}的其他基金
Modular injectable scaffolds for cell therapy and 3D bioprinting
用于细胞治疗和 3D 生物打印的模块化可注射支架
- 批准号:
RGPIN-2020-06684 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Modular injectable scaffolds for cell therapy and 3D bioprinting
用于细胞治疗和 3D 生物打印的模块化可注射支架
- 批准号:
RGPIN-2020-06684 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Injectable thermosensitive hydrogels with enhanced mechanical properties for cell therapy
用于细胞治疗的具有增强机械性能的可注射热敏水凝胶
- 批准号:
RGPIN-2015-05169 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Endovascular implants and biomaterials
血管内植入物和生物材料
- 批准号:
1000229036-2012 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
Canada Research Chairs
Injectable thermosensitive hydrogels with enhanced mechanical properties for cell therapy
用于细胞治疗的具有增强机械性能的可注射热敏水凝胶
- 批准号:
RGPIN-2015-05169 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Injectable bioactive hydrogel for the regeneration of intervertebral disc
用于椎间盘再生的可注射生物活性水凝胶
- 批准号:
508365-2017 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative Health Research Projects
Endovascular implants and biomaterials
血管内植入物和生物材料
- 批准号:
1000229036-2012 - 财政年份:2017
- 资助金额:
$ 4.01万 - 项目类别:
Canada Research Chairs
Injectable thermosensitive hydrogels with enhanced mechanical properties for cell therapy
用于细胞治疗的具有增强机械性能的可注射热敏水凝胶
- 批准号:
RGPIN-2015-05169 - 财政年份:2017
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Injectable bioactive hydrogel for the regeneration of intervertebral disc
用于椎间盘再生的可注射生物活性水凝胶
- 批准号:
508365-2017 - 财政年份:2017
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative Health Research Projects
Injectable thermosensitive hydrogels with enhanced mechanical properties for cell therapy
用于细胞治疗的具有增强机械性能的可注射热敏水凝胶
- 批准号:
RGPIN-2015-05169 - 财政年份:2016
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
从Wnt/β-catenin/Lgr5途径探讨穴位注射促进ORNs再生治疗变应性鼻炎嗅觉障碍的机制
- 批准号:82360891
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
可注射siTNF-α/BMSCs水凝胶递送体系实现退变椎间盘髓核再生
- 批准号:82372447
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
可注射大孔水凝胶的构建及其调控炎症反应促进骨修复研究
- 批准号:32371383
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
负载M2型小胶质细胞的柠檬酸基热敏可注射水凝胶促进脊髓损伤修复的作用及机制研究
- 批准号:82301582
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
递送MSCs并增强其旁分泌功能的可注射水凝胶微胶囊用于卵巢早衰的治疗
- 批准号:32301136
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Modular injectable scaffolds for cell therapy and 3D bioprinting
用于细胞治疗和 3D 生物打印的模块化可注射支架
- 批准号:
RGPIN-2020-06684 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
- 批准号:
10614543 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Injectable Fibrous Scaffolds for Meniscal Repair
用于半月板修复的可注射纤维支架
- 批准号:
10670868 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Modular injectable scaffolds for cell therapy and 3D bioprinting
用于细胞治疗和 3D 生物打印的模块化可注射支架
- 批准号:
RGPIN-2020-06684 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Injectable Fibrous Scaffolds for Meniscal Repair
用于半月板修复的可注射纤维支架
- 批准号:
10311622 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别: