Multi-variate and multi-modal modelling of neuroimaging data to better understand brain ageing
神经影像数据的多变量和多模式建模,以更好地了解大脑衰老
基本信息
- 批准号:RGPIN-2020-05448
- 负责人:
- 金额:$ 3.42万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding variation in ageing requires sophisticated techniques that can examine brain structure and function across volumetric, microstructural, and functional dimensions. Here, we leverage recent developments from my group for the integration of multi-modal MRI data (using non negative matrix factorization [NMF]) to build models that allow for an improved understanding of how variation in brain structure and function integrate and are related to cognition, with specific focus on the hippocampus.
We will use publicly available data (the Human Connectome Project) containing state-of-the-art MRI of brain microstructure related myelin content and axonal properties in addition normative brain function using resting state functional MRI (rsfMRI). We will relate cognitive and functional tasks back to MRI-derived measures. Finally, we will use these techniques in a machine learning-based prediction model for individual age in a well-characterized healthy elderly sample. The goal would be to identify patterns of covariance that best predict cognitive function and age using an integrated analysis strategy that leverages NMF to define components of variance and then to examine the association of each component across cognitive measures using partial least squares (PLS). Compared to common decomposition techniques such as principal and independent component analysis, NMF outputs are more interpretable, sparse, and more spatially contiguous and non overlapping.
Research Goals:
1) Microstructural parcellation of the human hippocampus and its relationship with cognition: NMF outputs individual weightings for each subject will be estimated to assess microstructural variability across the 330 unrelated study participants in HCP. Inputs to the NMF will be indices from structural MRI thought to reflect myelin content (T1/T2 ratio) and indices from diffusion MRI (fractional anisotropy and mean diffusivity). Subject-specific component weighting will be related back to 32 cognitive tests administered by the HCP using PLS.
2) Functional parcellation of the human hippocampus and its relationship with cognition: Here we will use a hippocampus-whole-brain approach to derive a rsfMRI based parcellation. Once again the relationship between our parcellation will be related back to the 32 cognitive measures using PLS.
3) Using NMF to predict individual age in a normative population: We will use existing data from the Whitehall II Imaging Sub-study, collected in the FMRIB Centre at Oxford. This dataset includes structural and diffusion MRI, as well as resting-state fMRI scans from 800 community-dwelling adults aged 60-85 years old.
The development of an accelerated ageing biomarker has potential relevance to ageing studies in the future focused on heterogeneity of ageing trajectories and developing as a method that can help to better understand the variance in normative ageing. predicting future ageing trajectory.
了解衰老的变化需要复杂的技术来检查大脑的体积、微观结构和功能维度的结构和功能。在这里,我们利用我的团队在多模态 MRI 数据集成方面的最新进展(使用非负矩阵分解 [NMF])来构建模型,以便更好地理解大脑结构和功能的变化如何整合以及与认知,特别关注海马体。
我们将使用公开数据(人类连接组项目),其中包含最先进的大脑微结构相关髓磷脂含量和轴突特性的 MRI,以及使用静息态功能 MRI (rsfMRI) 的规范大脑功能。我们将把认知和功能任务与 MRI 得出的测量结果联系起来。最后,我们将在基于机器学习的预测模型中使用这些技术,以预测特征明确的健康老年人样本中的个体年龄。目标是使用集成分析策略来识别最能预测认知功能和年龄的协方差模式,该策略利用 NMF 定义方差分量,然后使用偏最小二乘法 (PLS) 检查每个分量在认知测量中的关联。与主成分分析和独立成分分析等常见分解技术相比,NMF 输出更可解释、更稀疏,并且在空间上更连续且不重叠。
研究目标:
1) 人类海马体的微观结构分区及其与认知的关系:NMF 输出每个受试者的个体权重将被估计,以评估 HCP 中 330 名不相关研究参与者的微观结构变异性。 NMF 的输入将是结构 MRI 的指数,被认为反映髓磷脂含量(T1/T2 比)和扩散 MRI 的指数(分数各向异性和平均扩散率)。特定于科目的成分权重将与 HCP 使用 PLS 进行的 32 项认知测试相关联。
2)人类海马体的功能分区及其与认知的关系:这里我们将使用海马全脑方法来推导基于 rsfMRI 的分区。我们的分区之间的关系将再次与使用 PLS 的 32 个认知测量相关联。
3) 使用 NMF 预测正常人群中的个体年龄:我们将使用在牛津 FMRIB 中心收集的 Whitehall II 成像子研究的现有数据。该数据集包括 800 名 60-85 岁社区居民的结构和扩散 MRI 以及静息态 fMRI 扫描。
加速衰老生物标志物的开发与未来的衰老研究具有潜在的相关性,重点关注衰老轨迹的异质性,并开发出一种有助于更好地理解正常衰老差异的方法。预测未来的衰老轨迹。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chakravarty, Mallar其他文献
Multimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization.
- DOI:
10.1038/s41467-023-44363-z - 发表时间:
2024-01-03 - 期刊:
- 影响因子:16.6
- 作者:
Vafaii, Hadi;Mandino, Francesca;Desrosiers-Gregoire, Gabriel;O'Connor, David;Markicevic, Marija;Shen, Xilin;Ge, Xinxin;Herman, Peter;Hyder, Fahmeed;Papademetris, Xenophon;Chakravarty, Mallar;Crair, Michael C.;Constable, R. Todd;Lake, Evelyn M. R.;Pessoa, Luiz - 通讯作者:
Pessoa, Luiz
Cortical hypometabolism and hypoperfusion in Parkinson's disease is extensive: probably even at early disease stages
- DOI:
10.1007/s00429-010-0246-0 - 发表时间:
2010-05-01 - 期刊:
- 影响因子:3.1
- 作者:
Borghammer, Per;Chakravarty, Mallar;Gjedde, Albert - 通讯作者:
Gjedde, Albert
Effects of Anticholinergic Burden on Verbal Memory Performance in First-Episode Psychosis.
- DOI:
10.1177/07067437231179161 - 发表时间:
2023-12 - 期刊:
- 影响因子:4
- 作者:
Belkacem, Agnes;Lavigne, Katie;Makowski, Carolina;Chakravarty, Mallar;Joober, Ridha;Malla, Ashok;Shah, Jai;Lepage, Martin - 通讯作者:
Lepage, Martin
Chakravarty, Mallar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chakravarty, Mallar', 18)}}的其他基金
Multi-variate and multi-modal modelling of neuroimaging data to better understand brain ageing
神经影像数据的多变量和多模式建模,以更好地了解大脑衰老
- 批准号:
RGPIN-2020-05448 - 财政年份:2022
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
Multi-variate and multi-modal modelling of neuroimaging data to better understand brain ageing
神经影像数据的多变量和多模式建模,以更好地了解大脑衰老
- 批准号:
RGPIN-2020-05448 - 财政年份:2021
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
Volumetric and morphological analysis of the memory circuit in healthy ageing
健康衰老过程中记忆回路的体积和形态分析
- 批准号:
RGPIN-2014-04034 - 财政年份:2019
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
Volumetric and morphological analysis of the memory circuit in healthy ageing
健康衰老过程中记忆回路的体积和形态分析
- 批准号:
RGPIN-2014-04034 - 财政年份:2018
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
Volumetric and morphological analysis of the memory circuit in healthy ageing
健康衰老过程中记忆回路的体积和形态分析
- 批准号:
RGPIN-2014-04034 - 财政年份:2017
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
Volumetric and morphological analysis of the memory circuit in healthy ageing
健康衰老过程中记忆回路的体积和形态分析
- 批准号:
RGPIN-2014-04034 - 财政年份:2016
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
Volumetric and morphological analysis of the memory circuit in healthy ageing
健康衰老过程中记忆回路的体积和形态分析
- 批准号:
RGPIN-2014-04034 - 财政年份:2015
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
Volumetric and morphological analysis of the memory circuit in healthy ageing
健康衰老过程中记忆回路的体积和形态分析
- 批准号:
RGPIN-2014-04034 - 财政年份:2014
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
多特征变量致灾因子条件下旱灾风险定量评估与调控
- 批准号:52379006
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于多参数和机器学习的喷灌变量施肥灌溉智慧决策方法
- 批准号:52379056
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于多源数据的流域水文变量的误差协调机制与尺度转换方法研究
- 批准号:52279025
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
玉米秸秆多尺度离散元模型构建及关键部件多变量互作的揉丝成型机理研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于空间基本变量的城市SDGs多尺度空间型监测机理与方法
- 批准号:42271289
- 批准年份:2022
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Developing quantum probabilistic approach to spectral graph theory and multi-variate orthogonal polynomials
开发谱图理论和多元正交多项式的量子概率方法
- 批准号:
23K03126 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-variate and multi-modal modelling of neuroimaging data to better understand brain ageing
神经影像数据的多变量和多模式建模,以更好地了解大脑衰老
- 批准号:
RGPIN-2020-05448 - 财政年份:2022
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
Investigation of the factors contributing to fracture risk in clinical populations using novel image processing techniques of standard DXA images from longitudinal datasets.
使用来自纵向数据集的标准 DXA 图像的新型图像处理技术,调查导致临床人群骨折风险的因素。
- 批准号:
451177 - 财政年份:2021
- 资助金额:
$ 3.42万 - 项目类别:
Operating Grants
Multi-variate and multi-modal modelling of neuroimaging data to better understand brain ageing
神经影像数据的多变量和多模式建模,以更好地了解大脑衰老
- 批准号:
RGPIN-2020-05448 - 财政年份:2021
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
Microbiome regulation of beta cell autoimmunity and diabetes
β细胞自身免疫和糖尿病的微生物组调节
- 批准号:
404242 - 财政年份:2018
- 资助金额:
$ 3.42万 - 项目类别:
Operating Grants