Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
基本信息
- 批准号:RGPIN-2020-04661
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Signal processing along with the resurgent AI technology have become ubiquitous to process data from all types of sources. Many data, either from networked sources such as sensor networks and social networks or from other sources such as images and videos, contain explicit or implicit structured relationships that can be best represented by a graph. These types of network data pose new challenges to signal processing research. Recent signal processing and statistical modeling technologies for data with a graph structure mainly include a) graphical modeling and learning theory, and b) graph signal processing. However, these theories and methods have not been fully investigated under various constraints posed by emerging applications to solve problems such as localization and tracking, source identification, optimal filtering over networks. In addition, in many cases, identification or learning of the unknown or implicit network/graph structures is a very challenging problem.
The overall objective of the proposed research is to systematically develop new signal and data processing theories and methods for data that have explicit, such as in sensor networks, or implicit, such as in videos, underlying nonlocal graph based relationships and/or dynamic information diffusion flow, and applications in sensor/social networks, 5G Internet of things (IoT) wireless networks, multimodality multimedia content analysis, and economic big data.
Specific objectives are (i) to develop general network statistical signal processing and inference models and methods over a sensor network for dynamic multiple target localization and tracking; (ii) to identify original signal sources in the presence of noise and interference for data generated by a network information diffusion process, based on the graph shift operator theory, and to develop optimal filtering and prediction methods over the network; also to develop the optimal learning algorithms to estimate the network structure if it is unknown; and (iii) to design a graph shift operator or manifold kernel that can best represent the complex nonlocal hidden correlation and statistical structures of data for better data filtering, analysis and processing. We will further apply our research to applications such as multimedia signal processing, video event detection and predictions, 5G IoT networks, social networks, finance and economic big data analysis.
信号处理以及复兴的AI技术已无处不在,可以从所有类型的来源处理数据。许多数据,来自传感器网络和社交网络等网络来源,或者来自图像和视频等其他来源,都包含可以最好由图表表示的明确或隐式结构关系。这些类型的网络数据提出了新的挑战,可以发出加工研究。具有图形结构的数据的最新信号处理和统计建模技术主要包括a)图形建模和学习理论以及b)图形信号处理。但是,这些理论和方法尚未在新兴应用程序构成的各种限制下得到充分研究,以解决诸如本地化和跟踪,源识别,对网络上的最佳过滤等问题。此外,在许多情况下,对未知或隐式网络/图形结构的识别或学习是一个非常具有挑战性的问题。
The overall objective of the proposed research is to systematically develop new signal and data processing theories and methods for data that have explicit, such as in sensor networks, or implicit, such as in videos, underlying nonlocal graph based relationships and/or dynamic information diffusion flow, and applications in sensor/social networks, 5G Internet of things (IoT) wireless networks, multimodality multimedia content analysis, and economic big data.
特定的目标是(i)在传感器网络上开发一般网络统计信号处理以及推理模型和方法,以动态多重目标定位和跟踪; (ii)基于图形移动操作员理论,在存在噪声和网络信息扩散过程中的噪声和干扰的情况下确定原始信号源,并在网络上开发最佳的过滤和预测方法;还要开发最佳学习算法以估计网络结构是否未知; (iii)设计图形移位操作员或歧管内核,该内核最能代表数据的复杂非局部隐藏相关性和数据的统计结构,以进行更好的数据过滤,分析和处理。我们将进一步将研究应用于多媒体信号处理,视频事件检测和预测,5G IoT网络,社交网络,金融和经济大数据分析等应用程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhang, XiaoPing其他文献
MicroRNA 107 Partly Inhibits Endothelial Progenitor Cells Differentiation via HIF-1 beta
MicroRNA 107 通过 HIF-1 beta 部分抑制内皮祖细胞分化
- DOI:
- 发表时间:
- 期刊:
- 影响因子:3.7
- 作者:
Meng, Shu;Cao, JiaTian;Wang, LianSheng;Zhou, Qing;Li, YiGang;Shen, ChengXing;Zhang, XiaoPing;Wang, ChangQian - 通讯作者:
Wang, ChangQian
Enhanced expression of caveolin-1 possesses diagnostic and prognostic value and promotes cell migration, invasion and sunitinib resistance in the clear cell renal cell carcinoma
Caveolin-1 表达增强具有诊断和预后价值,可促进透明细胞肾细胞癌中的细胞迁移、侵袭和舒尼替尼耐药
- DOI:
10.1016/j.yexcr.2017.07.004 - 发表时间:
2017-09-15 - 期刊:
- 影响因子:3.7
- 作者:
Ruan, HaiLong;Li, Xiang;Zhang, XiaoPing - 通讯作者:
Zhang, XiaoPing
PLIN3 is up-regulated and correlates with poor prognosis in clear cell renal cell carcinoma
PLIN3 上调并与透明细胞肾细胞癌的不良预后相关
- DOI:
10.1016/j.urolonc.2018.04.006 - 发表时间:
2018-07-01 - 期刊:
- 影响因子:2.7
- 作者:
Wang, Keshan;Ruan, HaiLong;Zhang, XiaoPing - 通讯作者:
Zhang, XiaoPing
Overexpression of PPT2 Represses the Clear Cell Renal Cell Carcinoma Progression by Reducing Epithelial-to-mesenchymal Transition
- DOI:
10.7150/jca.36477 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Yuan, ChangFei;Xiong, ZhiYong;Zhang, XiaoPing - 通讯作者:
Zhang, XiaoPing
Expression of AMPA receptor subunits in hippocampus after status convulsion
- DOI:
10.1007/s00381-012-1747-3 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:1.4
- 作者:
Hu, Yue;Jiang, Li;Zhang, XiaoPing - 通讯作者:
Zhang, XiaoPing
Zhang, XiaoPing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhang, XiaoPing', 18)}}的其他基金
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
- 批准号:
RGPIN-2020-04661 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
- 批准号:
RGPAS-2020-00106 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
- 批准号:
RGPAS-2020-00106 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Advanced Localization Technology and RF Propagation Models for Emergency Radio Communication Enhancement System (ERCES)
用于紧急无线电通信增强系统(ERCES)的先进定位技术和射频传播模型
- 批准号:
558257-2020 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Alliance Grants
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
- 批准号:
RGPIN-2020-04661 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
COVID-19 - AI Based Screening and Monitoring of COVID-19 Respiration Patterns using Acoustic Sensors
COVID-19 - 使用声学传感器进行基于 AI 的 COVID-19 呼吸模式筛查和监测
- 批准号:
550079-2020 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Alliance Grants
Statistical Signal Processing and Learning on Networks and Graphs
网络和图的统计信号处理和学习
- 批准号:
RGPAS-2020-00106 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Advanced Localization Technology and RF Propagation Models for Emergency Radio Communication Enhancement System (ERCES)
用于紧急无线电通信增强系统(ERCES)的先进定位技术和射频传播模型
- 批准号:
558257-2020 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Alliance Grants
Signal and Data Processing Based on Statistical and Graphical Models
基于统计和图形模型的信号和数据处理
- 批准号:
RGPIN-2015-04483 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Predicting voting behaviour based on machine learning and signal processing algorithms
基于机器学习和信号处理算法预测投票行为
- 批准号:
536609-2018 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Engage Grants Program
相似国自然基金
Sirt1通过调控Gli3 processing维持SHH信号促进髓母细胞瘤的发展及机制研究
- 批准号:82373900
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于脑电信号的多层次汉语情绪加工研究
- 批准号:62366045
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
超快激光加工CFRP缺陷的多模态信号时空耦合机制与控制方法研究
- 批准号:62373254
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
莲子淀粉在多元加工体系下的内源性成分互作与稳态化变化及其对肠脑轴信号调控
- 批准号:U22A20549
- 批准年份:2022
- 资助金额:254.00 万元
- 项目类别:联合基金项目
靶向Gli3 processing调控Shh信号通路的新型抑制剂治疗儿童髓母细胞瘤及相关作用机制研究
- 批准号:82104210
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Soft wireless multimodal cardiac implantable devices for long-term investigating heart failure pathogenesis
用于长期研究心力衰竭发病机制的软无线多模式心脏植入装置
- 批准号:
10735395 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Serocalculator: Estimating Incidence Rates from Serological Data
血清计算器:根据血清学数据估算发病率
- 批准号:
10658478 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Probing an increased reliance on reticulospinal motor pathways in chronic hemiparetic stroke with advanced spinal cord functional MRI
利用先进的脊髓功能 MRI 探讨慢性偏瘫卒中对网状脊髓运动通路的依赖性增加
- 批准号:
10750576 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
High-Intensity Ultrasound Ablation for Septal Reduction Therapy of Hypertrophic Cardiomyopathy
高强度超声消融室间隔缩小术治疗肥厚型心肌病
- 批准号:
10818081 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
SCH: Novel and Interpretable Statistical Learning for Brain Images in AD/ADRDs
SCH:针对 AD/ADRD 大脑图像的新颖且可解释的统计学习
- 批准号:
10816764 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别: