Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys

高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论

基本信息

  • 批准号:
    RGPIN-2019-06264
  • 负责人:
  • 金额:
    $ 2.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Fatigue accounts for at least 90 percent of all service failures of components subjected to cyclic loading, as experienced by automobiles, aircraft, compressors, pumps, turbines, etc. Traditionally, engineers and researchers have to perform testing to determine a material's fatigue property, which results in high costs in time and money, thus prolonging the development cycle in material and component design for mechanical/structural systems. Recent research has reported that the low cycle fatigue (LCF) life of a material can be formulated in terms of material's physical properties including Burgers vector, shear modulus and surface energy. High cycle fatigue (HCF) is, in essence, a process of microstructural LCF crack nucleation plus crack propagation. Enlightened by these understandings, a computational fatigue design approach is proposed in the present research, aiming to search for new high-temperature alloys with superior fatigue resistance. A microstructure-based numerical model combined with first-principles density functional theory (DFT) will be developed and then used to predict the crack nucleation life of polycrystalline metals for a wide spectrum of loading from LCF to HCF. Furthermore, utilizing the deformation mechanisms involving glide and climb of dislocations within grain interior and along grain boundaries, a holistic theoretical framework the integrated creep-fatigue theory (ICFT) for high-temperature alloys will also be proposed in the present research. The theoretical model established based on the first cornerstone leads to constitutive laws encompassing all possible deformation mechanisms and that based on the second cornerstone describes the damage accumulation process leading to fracture, and thus defines the life under general loading conditions that involve a combination of fatigue, creep and thermomechanical fatigue. Using this theory, only limited laboratory-testing will be required for a new material development such that material behavior under complicated loading conditions can be linked to the fundamental deformation mechanisms. Once established, the proposed theory and model will speed up material development and application to meet the fast-growing technological demands and stringent environmental requirements in the 21st century and future. They also have a great implication in prognosis and health management of existing or newly designed mechanical systems, with accurate life prediction, offering tremendous savings in life cycle management. In addition to the benefits for the research field, the proposed research has also planned the training of Highly Qualified Personnel (HQP) with serious consideration of Equity, Diversity and Inclusion (EDI). The time and cost saving using this research outcomes to design new materials and maintain mechanical systems to meet continuously increasing requirements for the gas turbine industry will certainly benefit and contribute to the economy and society of Canada.
在汽车、飞机、压缩机、泵、涡轮机等承受循环载荷的部件的所有使用故障中,疲劳至少占 90%。传统上,工程师和研究人员必须进行测试以确定材料的疲劳特性,这导致时间和金钱成本高昂,从而延长了机械/结构系统材料和组件设计的开发周期。最近的研究表明,材料的低周疲劳 (LCF) 寿命可以根据材料的物理特性(包括伯格斯矢量、剪切模量和表面能)来计算。高周疲劳(HCF)本质上是微观结构LCF裂纹形核加裂纹扩展的过程。受这些理解的启发,本研究提出了一种计算疲劳设计方法,旨在寻找具有优异抗疲劳性能的新型高温合金。将开发基于微观结构的数值模型与第一原理密度泛函理论 (DFT) 相结合,然后用于预测从 LCF 到 HCF 的宽范围载荷下多晶金属的裂纹成核寿命。此外,利用涉及晶粒内部和沿晶界的位错滑移和攀爬的变形机制,本研究还将提出高温合金的综合蠕变疲劳理论(ICFT)的整体理论框架。基于第一个基石建立的理论模型导致涵盖所​​有可能的变形机制的本构定律,而基于第二个基石的理论模型描述了导致断裂的损伤累积过程,从而定义了涉及疲劳、蠕变和热机械疲劳。利用这一理论,新材料的开发只需要有限的实验室测试,这样复杂负载条件下的材料行为就可以与基本变形机制联系起来。一旦建立,所提出的理论和模型将加速材料的开发和应用,以满足21世纪和未来快速增长的技术需求和严格的环境要求。它们还对现有或新设计的机械系统的预测和健康管理具有重大影响,具有准确的寿命预测,可在生命周期管理中节省大量成本。除了对研究领域的好处外,拟议的研究还规划了高素质人才(HQP)的培训,并认真考虑了公平、多样性和包容性(EDI)。利用这项研究成果来设计新材料和维护机械系统,以满足燃气轮机行业不断增长的要求,节省时间和成本,这肯定会给加拿大的经济和社会带来好处和贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liu, Rong其他文献

The Comparison of Temporal Transcriptome Changes Between Morning-Opening and Afternoon-Opening Iris Flowers Reveals the Candidate Genes Regulating Flower Opening and Closing
  • DOI:
    10.1007/s12374-022-09363-4
  • 发表时间:
    2022-08-13
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Liu, Rong;Gao, Yike;Zhang, Qixiang
  • 通讯作者:
    Zhang, Qixiang
Graphdiyne Filter for Decontaminating Lead-Ion-Polluted Water
用于净化铅离子污染水的石墨炔过滤器
  • DOI:
    10.1002/aelm.201700122
  • 发表时间:
    2017-11-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Liu, Rong;Zhou, Jingyuan;Liu, Zhongfan
  • 通讯作者:
    Liu, Zhongfan
Experimental investigation and improved FE modeling of axially-loaded circular RC columns under lateral impact loading
横向冲击载荷下轴向受力圆形 RC 柱的实验研究和改进的有限元建模
  • DOI:
    10.1016/j.engstruct.2017.09.009
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Liu, Bin;Fan, Wei;Liu, Rong
  • 通讯作者:
    Liu, Rong
Transition of ovarian granulosa cell tumor from a solid mass to a cystic mass in two months on MR imaging in an adult woman: A case report.
  • DOI:
    10.1016/j.radcr.2022.10.044
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Rong;Ye, Lan;Yan, Jiayi;Cao, Yunyun;Huang, Suming;Qian, Zhaoxia;Qian, Ting
  • 通讯作者:
    Qian, Ting

Liu, Rong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liu, Rong', 18)}}的其他基金

Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
  • 批准号:
    RGPIN-2019-06264
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
  • 批准号:
    RGPIN-2019-06264
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanical-Alloying-Assisted Syntheses of Cobalt-Containing Multi-Component Systems and MAX Phases
含钴多组分系统和 MAX 相的机械合金化辅助合成
  • 批准号:
    538050-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Collaborative Research and Development Grants
Investigation of oxidation and creep resistance of nickel-based alloy with superalloy hardfacing and thermal barrier coating
高温合金堆焊和热障涂层镍基合金的氧化和抗蠕变性能研究
  • 批准号:
    500913-2016
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Collaborative Research and Development Grants
Investigation of oxidation and creep resistance of nickel-based alloy with superalloy hardfacing and thermal barrier coating
高温合金堆焊和热障涂层镍基合金的氧化和抗蠕变性能研究
  • 批准号:
    500913-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Collaborative Research and Development Grants
Mechanical-Alloying-Assisted Syntheses of Cobalt-Containing Multi-Component Systems and MAX Phases
含钴多组分系统和 MAX 相的机械合金化辅助合成
  • 批准号:
    538050-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Collaborative Research and Development Grants
Ceramic Shot-Peening of a Landing Gear Component
起落架部件的陶瓷喷丸
  • 批准号:
    538023-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Engage Grants Program
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
  • 批准号:
    RGPIN-2019-06264
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of oxidation and creep resistance of nickel-based alloy with superalloy hardfacing and thermal barrier coating
高温合金堆焊和热障涂层镍基合金的氧化和抗蠕变性能研究
  • 批准号:
    500913-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Collaborative Research and Development Grants
Mechanical-Alloying-Assisted Syntheses of Cobalt-Containing Multi-Component Systems and MAX Phases
含钴多组分系统和 MAX 相的机械合金化辅助合成
  • 批准号:
    538050-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

基于同步辐射快速成像的空化流两相微观结构及其失稳机制研究
  • 批准号:
    52306041
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
镧-碳酸根络合物的分子结构及其在针铁矿表面微观络合机制的计算模拟研究
  • 批准号:
    42302038
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
双向拉伸诱导下生物可降解高分子的微观结构演化与流变机理
  • 批准号:
    12372245
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
热蒸镀准二维钙钛矿微观结构、薄膜质量与发光二极管关联研究
  • 批准号:
    62374103
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
直接中子探测半导体6LiInP2Se6的晶体生长、微观结构与中子探测器研究
  • 批准号:
    52372011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
  • 批准号:
    RGPIN-2019-06264
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
  • 批准号:
    RGPIN-2019-06264
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
  • 批准号:
    RGPIN-2019-06264
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
QRM: Microstructural Quantification and Virtual Reconstruction of Polymer Matrix Composites within the Integrated Computational Materials Engineering (ICME) Approach
QRM:集成计算材料工程 (ICME) 方法中聚合物基复合材料的微观结构量化和虚拟重建
  • 批准号:
    1826232
  • 财政年份:
    2018
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
Integrated Analytical-Computational Analysis of Microstructural Influences on Seismic Anisotropy
微观结构对地震各向异性影响的综合解析计算分析
  • 批准号:
    1118786
  • 财政年份:
    2011
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了