Exact and approximate solution methods for batch scheduling problems
批量调度问题的精确和近似求解方法
基本信息
- 批准号:RGPIN-2019-05691
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In production and service industries, the scheduling and sequencing of activities play a crucial role in the efficient allocation of tasks to resources. Batch scheduling is the type of scheduling in which multiple jobs are grouped and processed together. Some examples where batch scheduling is encountered are semiconductor manufacturing, furniture manufacturing, chemical production, metal industry, textile industry, transportation, etc. Vis-à-vis the Canadian economy, two very important sectors where batch scheduling is encountered are steel and aluminum production. In 2017, these industries employed more than a total of 33,000 people and contributed around $9 billion to Canada's gross domestic product.
Decision making in production planning is a dynamic process and the application of a general (daily, weekly, etc.) policy is unlikely to be determined. Analytical models can be used to take optimal (or close to optimal) batching decisions. Most of the time, these models are helpful to solve only small size problems because of their mathematical complexity. Our aim is to develop efficient solution methods for a generic model that incorporates as many of the more crucial realistic aspects of the batch scheduling problem as we can.
While the batch scheduling literature is rich in heuristic and metaheuristic solution methods, mathematical decomposition methods and exact algorithms are developed for a few problems with simplified hypotheses. With regards to approximation algorithms, most of the existing work has focused on makespan minimization. The proposed research program seeks to develop novel solution techniques by grouping real-life hypotheses such as parallel machines, job release dates, due dates, job families, job dimensions, etc. At first, we will focus on mathematical decomposition methods based on time indexed column generation models (also coupled with row generation depending on the problem type) capable of representing real-life hypotheses. Then we will continue with another setting in which problem data is not fully known in advance. For that setting, we will develop online approximation algorithms to take real-time batching decisions. It is also crucial to test how optimizing the batching step effects the efficiency of the overall system. For that purpose, we will build a generic simulation model for steel production and integrate previously developed batching algorithms as scheduling decisions in that simulation model.
The proposed research targets primarily the Operations Research (OR) community, but it also intends to allow practitioners to take optimum decisions in production planning and scheduling. I also expect the outcome of this research to generate new research ideas for the OR community and help to improve the notion of applying OR techniques in production industries.
在生产和服务行业中,活动的调度和测序在批处理计划的效率中起着至关重要的作用纺织工业,运输等。阿纳德经济,批量计划的两个非常重要的是钢铝的生产。
生产计划中的决策是一个动态的过程,可以使用一般(每周等)模型的应用来采取最佳(或接近最佳)批处理决策,这些模型只能解决他们的尺寸问题。通用模型的数学复杂性。
尽管批处理文献富含启发式和元尿素解决方案方法,但对于一些Sith而言,Algori Thms却在近似算法方面开发出来。 ,工作释放日期,作业,J amilies,工作维度等。首先,我们将基于时间索引列的生成模型(也与座位相结合),重点介绍数学分解方法。在哪个问题数据中并不完全知道。设置,我们将在线近似算法进行实时批次决定。 THAATS模拟模型。
拟议的人针对运营研究(OR)社区,但它也打算采取最佳决策II n生产计划和调度在生产行业中应用或技术的概念。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ozturk, Onur其他文献
Staff scheduling for residential care under pandemic conditions: The case of COVID-19.
- DOI:
10.1016/j.omega.2022.102671 - 发表时间:
2022-10 - 期刊:
- 影响因子:6.9
- 作者:
Moosavi, Amirhossein;Ozturk, Onur;Patrick, Jonathan - 通讯作者:
Patrick, Jonathan
Attitudes of health care professionals towards COVID-19 vaccine-a sequence from Turkey
- DOI:
10.1080/21645515.2021.1928462 - 发表时间:
2021-06-12 - 期刊:
- 影响因子:4.8
- 作者:
Oruc, Muhammet Ali;Ozturk, Onur - 通讯作者:
Ozturk, Onur
An optimization model for freight transport using urban rail transit
- DOI:
10.1016/j.ejor.2017.12.010 - 发表时间:
2018-06-16 - 期刊:
- 影响因子:6.4
- 作者:
Ozturk, Onur;Patrick, Jonathan - 通讯作者:
Patrick, Jonathan
Estimating the age of Hb G-Coushatta [22(B4)GluAla] mutation by haplotypes of -globin gene cluster in Denizli, Turkey
- DOI:
10.1002/mgg3.404 - 发表时间:
2018-07-01 - 期刊:
- 影响因子:2
- 作者:
Ozturk, Onur;Arikan, Sanem;Atalay, Erol O. - 通讯作者:
Atalay, Erol O.
Ozturk, Onur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ozturk, Onur', 18)}}的其他基金
Exact and approximate solution methods for batch scheduling problems
批量调度问题的精确和近似求解方法
- 批准号:
RGPIN-2019-05691 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Exact and approximate solution methods for batch scheduling problems
批量调度问题的精确和近似求解方法
- 批准号:
RGPIN-2019-05691 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Exact and approximate solution methods for batch scheduling problems
批量调度问题的精确和近似求解方法
- 批准号:
RGPIN-2019-05691 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Exact and approximate solution methods for batch scheduling problems
批量调度问题的精确和近似求解方法
- 批准号:
DGECR-2019-00328 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
非谐近似下三元富氢高温超导体结构和超导电性的研究
- 批准号:12304013
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国壳针孢及其近似属的分类及分子系统学研究
- 批准号:32370021
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于超图的装填与覆盖问题的多项式时间可解性及近似算法设计研究
- 批准号:12361065
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
基于超球面降维积分及抛物面近似的复杂产品可靠性评估理论研究
- 批准号:52375236
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
正则次模最大化问题的近似算法研究
- 批准号:12301419
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Multistage Stochastic Integer Programming: Approximate Solution Methods and Applications
多阶段随机整数规划:近似解法及应用
- 批准号:
RGPIN-2018-04984 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Challenge to Sigma-2P complete problems: moving up in the polynomial hierarchy
对 Sigma-2P 完整问题的挑战:在多项式层次结构中向上移动
- 批准号:
22K19813 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Exact and approximate solution methods for batch scheduling problems
批量调度问题的精确和近似求解方法
- 批准号:
RGPIN-2019-05691 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Multistage Stochastic Integer Programming: Approximate Solution Methods and Applications
多阶段随机整数规划:近似解法及应用
- 批准号:
RGPIN-2018-04984 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Exact and approximate solution methods for batch scheduling problems
批量调度问题的精确和近似求解方法
- 批准号:
RGPIN-2019-05691 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual