Electrochemical dynamics of nanoparticles suspended in an ionic liquid or organic ionic plastic crystal

悬浮在离子液体或有机离子塑料晶体中的纳米粒子的电化学动力学

基本信息

  • 批准号:
    RGPIN-2019-06074
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The main objective of our research program is the development of multi-purpose, flexible/mouldable electrode and electrolyte materials for health, energy storage, and catalytic applications. Long-term objectives will be towards evaluating nanocomposite materials incorporating plastic bulk material properties with embedded metal nanoparticles (NPs) for enhanced reactivity as well as improved ionic and electronic conductivity. Since electrode reactions are heterogeneous, occurring at either solid|solution or immiscible liquid|liquid interfaces, understanding interfacial reaction mechanisms and kinetics/thermodynamics is crucial for optimizing electrode material performance. This is complicated by the surface morphology (e.g. roughness), which inhibit or enhance species adsorption. To deconvolute interfacial reactions, we will use high-resolution (nanoscale) electrochemical imaging, which images surface electroactivity and topography, simultaneously in situ and in operando. These nanoprobes are capable of distinguishing single NPs. Physicochemical and electrocatalytic information is in turn a direct measure of device performance. In this way, we will assess material suitability and fill gaps in fundamental physical/material chemistry knowledge. Combined with conventional electrochemical methods (e.g. cyclic voltammetry and impedance spectroscopy), we will develop predictive models of nanocomposite material performance, which will enable us to develop new technologies and new scanning probe methodologies. We will also install electroactive materials into our nanoprobes to make highly sensitive proof-of-concept (bio)sensors. For NPs suspended in liquid media, we will employ techniques such as single NP tracking in tandem with stochastic NP impact detection to elucidate NP reactivity and NP generation/destruction processes. Short-term objectives will focus on metal NPs embedded in ionic liquids (ILs) or organic ionic plastic crystals (OIPCs). ILs are liquid at room temperature, while OIPCs are plastic. Through our scanning probe methods, we will gain insight into NP-NP and NP-IL/NP-OIPC interactions. We will explore simple one-step charge transfer processes, up to multi-step electrocatalysis. The impact of NPs on the physicochemical and morphological properties of IL and OIPC films will also be investigated, where they have been shown to enhance viscosity and the formation of defects/grain boundaries, respectively. These in-turn enhance ionic and electronic conductivity. The role of NPs in electrocatalysis in OIPC is virtually unexplored and will be a major focus of the research team at Memorial. Our work will contribute to Canada's leadership in the fields of electrocatalysis, advanced sensing, energy storage/harvesting, high resolution scanning probe imaging, and optical spectroscopy. HQP will develop highly valued electroanalytical, scanning probe, computational, synthetic, and materials characterization skills.
我们研究项目的主要目标是开发用于健康、能量存储和催化应用的多用途、柔性/可塑电极和电解质材料。长期目标是评估纳米复合材料,将塑料本体材料特性与嵌入的金属纳米粒子(NP)相结合,以增强反应性以及改善离子和电子电导率。 由于电极反应是非均相的,发生在固|溶液或不混溶的液|液界面,因此了解界面反应机制和动力学/热力学对于优化电极材料性能至关重要。表面形态(例如粗糙度)使情况变得复杂,它抑制或增强物质吸附。为了解卷积界面反应,我们将使用高分辨率(纳米级)电化学成像,它可以在原位和操作中同时对表面电活性和形貌进行成像。这些纳米探针能够区分单个纳米颗粒。物理化学和电催化信息又是设备性能的直接衡量标准。通过这种方式,我们将评估材料的适用性并填补基础物理/材料化学知识的空白。结合传统的电化学方法(例如循环伏安法和阻抗谱),我们将开发纳米复合材料性能的预测模型,这将使​​我们能够开发新技术和新的扫描探针方法。我们还将在纳米探针中安装电活性材料,以制造高灵敏度的概念验证(生物)传感器。 对于悬浮在液体介质中的 NP,我们将采用诸如单个 NP 跟踪与随机 NP 影响检测相结合的技术来阐明 NP 反应性和 NP 生成/破坏过程。 短期目标将集中于嵌入离子液体(IL)或有机离子塑料晶体(OIPC)中的金属纳米颗粒。 IL 在室温下是液体,而 OIPC 是塑料。通过我们的扫描探针方法,我们将深入了解 NP-NP 和 NP-IL/NP-OIPC 相互作用。我们将探索简单的一步电荷转移过程,直至多步电催化。还将研究纳米粒子对 IL 和 OIPC 薄膜的物理化学和形态特性的影响,它们已被证明可以分别提高粘度和缺陷/晶界的形成。这些反过来又增强了离子和电子的导电性。纳米粒子在 OIPC 电催化中的作用实际上尚未被探索,这将是纪念馆研究团队的主要关注点。 我们的工作将有助于加拿大在电催化、先进传感、能量存储/收集、高分辨率扫描探针成像和光谱学领域的领导地位。 HQP 将开发高价值的电分析、扫描探针、计算、合成和材料表征技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stockmann, Talia其他文献

Stockmann, Talia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stockmann, Talia', 18)}}的其他基金

Electrochemical dynamics of nanoparticles suspended in an ionic liquid or organic ionic plastic crystal
悬浮在离子液体或有机离子塑料晶体中的纳米粒子的电化学动力学
  • 批准号:
    RGPIN-2019-06074
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Electrochemical dynamics of nanoparticles suspended in an ionic liquid or organic ionic plastic crystal
悬浮在离子液体或有机离子塑料晶体中的纳米粒子的电化学动力学
  • 批准号:
    RGPIN-2019-06074
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Electrochemical dynamics of nanoparticles suspended in an ionic liquid or organic ionic plastic crystal
悬浮在离子液体或有机离子塑料晶体中的纳米颗粒的电化学动力学
  • 批准号:
    DGECR-2019-00421
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Electrochemical dynamics of nanoparticles suspended in an ionic liquid or organic ionic plastic crystal
悬浮在离子液体或有机离子塑料晶体中的纳米颗粒的电化学动力学
  • 批准号:
    RGPIN-2019-06074
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

不同尺度锑纳米颗粒的钠化相变热力学与动力学研究
  • 批准号:
    12374003
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
聚合物复合材料中纳米颗粒转动扩散动力学及影响机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
莱茵衣藻的细胞周期调控纳米银颗粒摄入动力学以及纳米银的毒性效应
  • 批准号:
    42207319
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
混合纳米流体沸腾传热颗粒输运-团聚特性及气泡动力学行为研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
莱茵衣藻的细胞周期调控纳米银颗粒摄入动力学以及纳米银的毒性效应
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Structure, Dynamics, and Catalysis with Dilute Bimetallic and Single Atom Alloy Nanoparticles
合作研究:稀双金属和单原子合金纳米粒子的结构、动力学和催化作用
  • 批准号:
    2300020
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
New drying dynamics considering orientation and deformation in dispersion films containing micro- and nanoparticles formed by coating
考虑通过涂层形成的含有微米和纳米粒子的分散膜的取向和变形的新干燥动力学
  • 批准号:
    22KJ1450
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Structure, Dynamics, and Catalysis with Dilute Bimetallic and Single Atom Alloy Nanoparticles
合作研究:稀双金属和单原子合金纳米粒子的结构、动力学和催化作用
  • 批准号:
    2300019
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Structure, Dynamics, and Catalysis with Dilute Bimetallic and Single Atom Alloy Nanoparticles
合作研究:稀双金属和单原子合金纳米粒子的结构、动力学和催化作用
  • 批准号:
    2300021
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Label-free intracellular dynamics investigation of carrier-free nanoparticle-based drug delivery systems
无载体纳米颗粒药物递送系统的无标记细胞内动力学研究
  • 批准号:
    22K20524
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了