Theoretical attosecond and strong field solid state physics

理论阿秒与强场固体物理

基本信息

  • 批准号:
    RGPIN-2018-04244
  • 负责人:
  • 金额:
    $ 4.44万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

My proposal is centered around the interaction of intense laser light with solids at the intersection of ultrafast photonics, nanophotonics, and condensed matter physics. Part I of my proposal focuses on laser intensities below material damage threshold. Recently high harmonic generation (HHG) in solids was demonstrated experimentally. As harmonic radiation is emitted on a laser sub-cycle time scale (~femtosecond (fs)), it results in the emission of attosecond (asec) pulses. This has created the field of attosecond and strong field solid state physics. Over the past few years my theoretical work has substantially contributed to shaping this field. Part I of my proposal builds on these results which puts me in a very good position to continue making key contributions. More groups have started moving into the field; as time is of essence, I request 1PDF, PhD #1 and MSc #1 to conduct the suggested quantum theory research. It will be focused on key questions of practical and fundamental relevance. How can we make attosecond solid state radiation sources more efficient and therewith practically relevant? How can HHG in solids be used to develop new diagnostic methods for materials, such as measuring the valence electron density, and time resolving ultrafast processes, such as collective excitations? To answer these questions new theoretical tools and models will have to be developed. Among those, my research will drive forward (non-perturbative) many-body quantum dynamics which has remained one of the major challenges of theoretical physics. Part II is about applications of the microscopic particle in cell (MicPIC) method which solves classical many-body dynamics self-consistently with laser propagation. It allows us to bridge the microscopic and macroscopic dynamics of light matter evolution. MicPIC captures many-body Coulomb interaction and resulting correlation to all orders which is a unique capacity. This is important for laser material interaction at higher intensities where damage occurs and a classical solid density plasma is created. There is no other method that can model the resulting strongly coupled plasma dynamics correctly. Part of my proposal will be focused on understanding the importance of collisions and plasma nano-fields in laser material machining. This will result in optimization of laser manufacturing processes. The second part will be focused on nano-photonics and the enhancement of strong field and nonlinear processes through nano-antennas and nano-resonators. Although MicPIC was not developed for this purpose we found it well suited to model the nonlinear response of metallic nano-systems. I will use MicPIC to gain insights on topical problems such as plasmon enhanced HHG and nonlinear optics which cannot be reliably modeled by any other approach. Due to the uniqueness of MicPIC there is less time pressure. This is why I request PhD #2 and MSc #2 for part II and no PDF.
我的建议围绕超快光子学、纳米光子学和凝聚态物理交叉点上强激光与固体的相互作用。 我的提案的第一部分重点关注低于材料损坏阈值的激光强度。最近通过实验证明了固体中的高次谐波产生(HHG)。当谐波辐射在激光子周期时间尺度(〜飞秒(fs))上发射时,它会导致阿秒(asec)脉冲的发射。这就创造了阿秒和强场固体物理领域。在过去的几年里,我的理论工作为塑造这个领域做出了巨大贡献。我的提案的第一部分建立在这些结果的基础上,这使我处于非常有利的位置,可以继续做出关键贡献。更多的团体开始进入这一领域;由于时间至关重要,我请求 1PDF、PhD #1 和 MSc #1 进行建议的量子理论研究。它将侧重于实际和根本相关的关键问题。我们如何才能使阿秒固态辐射源更加有效并具有实际意义?如何利用固体中的 HHG 来开发新的材料诊断方法,例如测量价电子密度,以及时间分辨超快过程(例如集体激发)?为了回答这些问题,必须开发新的理论工具和模型。其中,我的研究将推动(非微扰)多体量子动力学的发展,这仍然是理论物理学的主要挑战之一。 第二部分是关于细胞内微观粒子(MicPIC)方法的应用,该方法解决了与激光传播自洽的经典多体动力学问题。它使我们能够在光物质演化的微观和宏观动力学之间架起桥梁。 MicPIC 捕获多体库仑相互作用以及由此产生的与所有阶的相关性,这是一种独特的能力。这对于较高强度下的激光材料相互作用非常重要,在较高强度下会发生损伤并产生经典的固体密度等离子体。没有其他方法可以正确模拟所产生的强耦合等离子体动力学。我的提案的一部分将侧重于了解碰撞和等离子体纳米场在激光材料加工中的重要性。这将导致激光制造工艺的优化。第二部分将重点关注纳米光子学以及通过纳米天线和纳米谐振器增强强场和非线性过程。尽管 MicPIC 不是为此目的而开发的,但我们发现它非常适合模拟金属纳米系统的非线性响应。我将使用 MicPIC 来深入了解等离激元增强 HHG 和非线性光学等无法通过任何其他方法可靠建模的热门问题。由于 MicPIC 的独特性,时间压力较小。这就是为什么我要求第二部分的博士学位和第二部分的硕士学位,而不是 PDF。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brabec, Thomas其他文献

High harmonic generation in condensed matter
  • DOI:
    10.1038/s41566-022-00988-y
  • 发表时间:
    2022-05-09
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Goulielmakis, Eleftherios;Brabec, Thomas
  • 通讯作者:
    Brabec, Thomas
Multiscale QM/MM molecular dynamics study on the first steps of guanine damage by free hydroxyl radicals in solution.
  • DOI:
    10.1021/jp300258n
  • 发表时间:
    2012-04-19
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Abolfath, Ramin M.;Biswas, P. K.;Rajnarayanam, R.;Brabec, Thomas;Kodym, Reinhard;Papiez, Lech
  • 通讯作者:
    Papiez, Lech
Orbital perspective on high-harmonic generation from solids.
  • DOI:
    10.1038/s41467-023-44041-0
  • 发表时间:
    2023-12-18
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Jimenez-Galan, Alvaro;Bossaer, Chandler;Ernotte, Guilmot;Parks, Andrew M.;Silva, Rui E. F.;Villeneuve, David M.;Staudte, Andre;Brabec, Thomas;Luican-Mayer, Adina;Vampa, Giulio
  • 通讯作者:
    Vampa, Giulio
Reactive Molecular Dynamics Study on the First Steps of DNA Damage by Free Hydroxyl Radicals
  • DOI:
    10.1021/jp204894m
  • 发表时间:
    2011-10-13
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Abolfath, Ramin M.;van Duin, A. C. T.;Brabec, Thomas
  • 通讯作者:
    Brabec, Thomas
DNA-Backbone Radio Resistivity Induced by Spin Blockade Effect
  • DOI:
    10.1002/jcc.21554
  • 发表时间:
    2010-11-15
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Abolfath, Ramin M.;Brabec, Thomas
  • 通讯作者:
    Brabec, Thomas

Brabec, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brabec, Thomas', 18)}}的其他基金

ultrafast photonics
超快光子学
  • 批准号:
    CRC-2015-00041
  • 财政年份:
    2022
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Canada Research Chairs
Theoretical attosecond and strong field solid state physics
理论阿秒与强场固体物理
  • 批准号:
    RGPIN-2018-04244
  • 财政年份:
    2022
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrafast Photonics
超快光子学
  • 批准号:
    CRC-2015-00041
  • 财政年份:
    2021
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Canada Research Chairs
Theoretical attosecond and strong field solid state physics
理论阿秒与强场固体物理
  • 批准号:
    RGPIN-2018-04244
  • 财政年份:
    2021
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
ultrafast photonics
超快光子学
  • 批准号:
    1000230995-2015
  • 财政年份:
    2020
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Canada Research Chairs
Theoretical attosecond and strong field solid state physics
理论阿秒与强场固体物理
  • 批准号:
    RGPIN-2018-04244
  • 财政年份:
    2019
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
ultrafast photonics
超快光子学
  • 批准号:
    1000230995-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Canada Research Chairs
ultrafast photonics
超快光子学
  • 批准号:
    1000230995-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Canada Research Chairs
Theoretical attosecond and strong field solid state physics
理论阿秒与强场固体物理
  • 批准号:
    RGPIN-2018-04244
  • 财政年份:
    2018
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of complex systems in intense fields
强场中复杂系统的动力学
  • 批准号:
    261242-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

太瓦强激光驱动气体产生宏观高次谐波和阿秒脉冲的理论研究
  • 批准号:
    12364040
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
强激光驱动双纳米靶产生高强度阿秒脉冲的理论与模拟研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
宏观传播效应对分子在强激光场中产生高次谐波的影响
  • 批准号:
    11664035
  • 批准年份:
    2016
  • 资助金额:
    42.0 万元
  • 项目类别:
    地区科学基金项目
量子隧穿和相干效应在强激光场原子分子电离中的作用
  • 批准号:
    11404259
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
原子分子在强激光作用下电离电子低能谱的理论研究
  • 批准号:
    11174016
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Theoretical attosecond and strong field solid state physics
理论阿秒与强场固体物理
  • 批准号:
    RGPIN-2018-04244
  • 财政年份:
    2022
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical attosecond and strong field solid state physics
理论阿秒与强场固体物理
  • 批准号:
    RGPIN-2018-04244
  • 财政年份:
    2021
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical attosecond and strong field solid state physics
理论阿秒与强场固体物理
  • 批准号:
    RGPIN-2018-04244
  • 财政年份:
    2019
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical attosecond and strong field solid state physics
理论阿秒与强场固体物理
  • 批准号:
    RGPIN-2018-04244
  • 财政年份:
    2018
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical Investigation of Strong Field Processes for Advancing Attosecond Chemistry
推进阿秒化学的强场过程的理论研究
  • 批准号:
    1506441
  • 财政年份:
    2015
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了