Computability Theory and its Applications
可计算性理论及其应用
基本信息
- 批准号:RGPIN-2018-03982
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Up to the mid 19th century or so, mathematics was mostly algorithmic. Proofs of existence were usually done by giving an actual construction of the object. As mathematics began to become more abstract, people began to study the notions of algorithms and computability. The first stumbling block was on the definition of what it meant to be algorithmic or computable. When faced with an algorithm, people would agree that it was one, but how would one show that something could not be computed, or solved by an algorithm? By the 1930s, work of Turing and others culminated in an acceptable notion of computability.
Since the 1930s, computability theory has developed far beyond just checking what is computable and what is not. We have notions of relative computability, where we say A is computed from B if there is some program that can compute A if it is allowed to refer (finitely often) to an infinite tape coding B.
In this project, I propose to study various areas of mathematics, and use computability theory to examine the complexity of the proofs. This can help answer questions such as how difficult is it to prove one thing compared to another? Is the original proof the most efficient? How difficult is it to tell that similar objects are actually similar? By studying these properties, we can discover interesting phenomena about the area of mathematics being studied, often leading to further insight.
直到19世纪中叶左右,数学主要是算法。存在的证据通常是通过给物体的实际结构来完成的。随着数学开始变得越来越抽象,人们开始研究算法和计算性的概念。第一个绊脚石是关于算法或可计算的含义的定义。当面对算法时,人们会同意这是一种,但是如何表明无法通过算法来计算或解决某些问题?到1930年代,图灵(Turing)和其他工作的工作最终达到了可接受的可计算性概念。
自1930年代以来,计算理论的发展远远不止是检查什么是可计算的,什么不是。我们有相对可计算性的概念,如果有一些程序可以计算A(如果允许经常)将其引用到无限磁带编码B(有限频繁)。
在这个项目中,我建议研究数学的各个领域,并使用计算性理论来检查证明的复杂性。这可以帮助回答问题,例如与另一件事相比,证明一件事有多困难?原始证明是最有效的吗?说出类似对象实际上相似有多困难?通过研究这些特性,我们可以发现有关正在研究的数学领域的有趣现象,通常会导致进一步的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Csima, Barbara其他文献
Csima, Barbara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Csima, Barbara', 18)}}的其他基金
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
RGPIN-2018-03982 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
RGPIN-2018-03982 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
RGPIN-2018-03982 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
RGPIN-2018-03982 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
312501-2013 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
312501-2013 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
312501-2013 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
312501-2013 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
312501-2013 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Computability theory and its applications
可计算性理论及其应用
- 批准号:
312501-2008 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于自监督学习的医学图像质量迁移反问题理论
- 批准号:12301546
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于ChREBP乙酰化介导脂肪酸代谢探讨“肝病及心”理论内涵及降脂消斑方干预研究
- 批准号:82374192
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
圈长分布理论中的若干问题
- 批准号:12371350
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于自我调节理论的碌感对极简消费的影响机制与边际条件研究
- 批准号:72302097
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
RGPIN-2018-03982 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
RGPIN-2018-03982 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
RGPIN-2018-03982 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Computability theory on intuitionistic logic and its application to constructive reverse mathematics
直觉逻辑的可计算性理论及其在构造性逆向数学中的应用
- 批准号:
18K03392 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
RGPIN-2018-03982 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual