Structural Graph Theory and Applications
结构图理论及应用
基本信息
- 批准号:RGPIN-2018-05116
- 负责人:
- 金额:$ 5.39万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research program aims to advance knowledge and solve open problems in two broad but interrelated areas: graph theory and theoretical computer science. Our main emphasis is on interplay between combinatorics, algebra, topology and geometry with the main goal to apply the results in the design of efficient algorithms, obtaining lower bounds, and producing tools to handle large networks and large data sets. Our aim is to direct a broad research program and make essential contributions in each of the proposed areas.
1) Structural graph theory: (i) Graph minors and immersions. Our aim is to attack Hadwiger's conjecture using powerful new techniques. There is abundance of other open problems: HC for graph immersions, well quasi-ordering of immersion, totally odd immersions, and algorithmic questions. (ii) Crossing numbers. We have encouraging new results, which may lead to a powerful structure theory about crossing critical graphs and may have several algorithmic consequences. (iii) Classifying obstructions to embeddings of graphs into surfaces, apex graphs and wye-delta reducibility, linkless and knotless embeddings and embeddings of 2-dimensional complexes in 2-complexes or in 3-manifolds, both from the viewpoint of efficient algorithms and classifying obstructions. (iv) Flexibility of graph embeddings. We will develop general theory about the structure of embeddings of graphs in a fixed surface and produce an ultimate generalization that would describe all possible flexibilities of general graph embeddings.
2) Algebraic graph theory. Previously we described rough characterization of vertex transitive graphs with "small" separators. We will explore the consequences of this result. One of our goals is to increase our understanding of the graph isomorphism problem. The second algebraic question is about graph eigenvalues, where we plan to obtain a rough characterization of the structure of graphs with a bounded number of large eigenvalues. These questions have ties to graph limits.
3) Large graphs and graph limits. Our aim is to study limits of graphs on surfaces and other structured graph classes. Random graphs on a surface can be modeled by continuous trees (Brownian map). We will provide further understanding of this area via geometric methods.
4) Graph coloring. Here we will work in three directions, building on our recent work. Recently we proved a fractional version of a 1979 conjecture of Erdos and Neumann-Lara about the dichromatic number. Our goal is to resolve the full conjecture. We also proved the 4-chromatic case of a 1971 conjecture of Tomescu about extremal values of chromatic polynomials. Our goal is to prove Tomescu conjecture in its full generality. Thirdly, we plan to find a linear-time algorithm for 4-coloring planar graphs and attack several outstanding questions, e.g. the Grotzsch conjecture about edge-coloring subcubic graphs, or the 4-flow conjecture of Tutte.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohar, Bojan其他文献
Mohar, Bojan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohar, Bojan', 18)}}的其他基金
Structural Graph Theory and Applications
结构图理论及应用
- 批准号:
RGPIN-2018-05116 - 财政年份:2022
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Structural Graph Theory and Applications
结构图理论及应用
- 批准号:
RGPIN-2018-05116 - 财政年份:2021
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Structural Graph Theory and Applications
结构图理论及应用
- 批准号:
RGPIN-2018-05116 - 财政年份:2019
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Structural Graph Theory and Applications
结构图理论及应用
- 批准号:
RGPIN-2018-05116 - 财政年份:2018
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and Topological Methods in Graph Theory
图论中的代数和拓扑方法
- 批准号:
311960-2013 - 财政年份:2017
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and Topological Methods in Graph Theory
图论中的代数和拓扑方法
- 批准号:
311960-2013 - 财政年份:2015
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
细胞膜磷脂全原子可极化分子力场的建立及其与软硬件加速技术结合的高精度膜蛋白理论模拟新方法的实现及应用
- 批准号:21573217
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
基于局域分子轨道的高效多组态自洽场方法及程序
- 批准号:21203147
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
多元非金属团簇结构规律的理论研究
- 批准号:20873107
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
二元非金属团簇结构规律的理论研究
- 批准号:20473061
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
人体鼻腔结构与功能自适应生物力学模型的研究
- 批准号:10472025
- 批准年份:2004
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Peri-ictal respiratory and arousal disturbances in focal epilepsy: Role of the brainstem
局灶性癫痫发作期间的呼吸和觉醒障碍:脑干的作用
- 批准号:
10799997 - 财政年份:2023
- 资助金额:
$ 5.39万 - 项目类别:
Structural Graph Theory and Applications
结构图理论及应用
- 批准号:
RGPIN-2018-05116 - 财政年份:2022
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Structural graph theory for colouring algorithms and network reliability
着色算法和网络可靠性的结构图理论
- 批准号:
DGECR-2022-00446 - 财政年份:2022
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Launch Supplement