Large-Scale and Big Data Optimization
大规模、大数据优化
基本信息
- 批准号:RGPIN-2017-06715
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In today's digital world, with ever increasing amounts of data comes the need to solve optimization problems of unprecedented sizes. Machine learning, communication and social networks, logistics systems are some of the many prominent application domains where optimization problems arise with tens of thousands or millions of variables. Many optimization models and algorithms, while exhibiting great efficiency in modest dimensions, have great difficulties to scale for instances of this size and do not offer satisfactory solution. The primary and long-term objective of my research is to contribute to the design of novel optimization algorithms capable of working in very large-scale setting. I plan to investigate both exact and heuristic methods, and validate the findings on some particular applications in communication, logistics and social networks.
For exact methods, the objective is to integrate knowledge based on both theoretical and empirical evidence from several disciplines, and explore the "what, why, how, and do" paradigm with an emphasis on (i) modelling aspects, (ii) combination of mathematical models, and (iii) parallelization techniques in order to take advantage of the heterogeneous environments combining multi-core processors, multi-threaded programming and GPU accelerators for very large scale optimization. While those environment were only available on mainframe computers, they are now available to computers that are easily accessible to the industry.
For heuristic methods, focus will be on meta-heuristics, a wide class of solution methods that have been successfully applied to many optimization problems. However, they seem to have reached their limits to solve very large combinatorial problems such as those arising in cross-docking or network optimization. This is because meta-heuristics explore the solution space with ad-hoc methods, whose efficiency and computing time highly depend on the topology of the local optima which, except for some very particular problems, are very difficult to foresee. We plan to replace the ad-hoc exploration of the solution space with an informed exploration guided by machine learning. Comparison will be made with direct machine learning algorithms on practical problems arising in: (i) supply chain management and in particular with cross-docking, and (ii) network optimization and (iii) mechanism design in social networks. Data required by machine learning algorithms will be provided by ClearD and Ciena for the first two applications, and an organization/industrial partner needs to be identified for the third one.
The results of my research will provide the industry (like ClearD and Ciena) information technology management tools for efficient and automated cross-docking/network management, not only to improve competitiveness but also to reduce energy consumption and therefore carbon footprint.
在当今的数字世界中,随着数据量的越来越多,需要解决前所未有的优化问题。机器学习,沟通和社交网络,物流系统是许多突出的应用领域中的一些,其中优化问题发生了数万或数百万变量。许多优化模型和算法在适度的维度上表现出很高的效率,但对于此尺寸的实例而言,很难扩展,并且没有提供令人满意的解决方案。我的研究的主要和长期目标是为能够在非常大规模的环境中工作的新型优化算法的设计做出贡献。我计划研究精确的和启发式方法,并验证有关交流,物流和社交网络中某些特定应用的发现。
对于确切的方法,目的是基于几个学科的理论和经验证据整合知识,并探索“什么,为什么,为什么,如何做”范式,重点是(i)建模方面,(i)建模,(ii)数学模型的组合,以及(iii)的跨度程序,以利用跨度环境的整合构成整合的整合构成组合的组合,这加速器进行非常大规模的优化。尽管这些环境仅在大型机计算机上可用,但现在它们可用于行业易于访问的计算机。
对于启发式方法,将重点放在元映体上,这是一种已成功应用于许多优化问题的广泛解决方案方法。但是,他们似乎已经达到了解决非常大的组合问题的限制,例如在交叉船上或网络优化中引起的问题。这是因为Meta-Heuristics使用临时方法探索解决方案空间,其效率和计算时间在很大程度上取决于局部Optima的拓扑,除了一些非常特殊的问题外,很难预见。我们计划通过以机器学习为指导的知情探索来替换解决方案空间的临时探索。将与直接机器学习算法进行比较,该算法在以下方面引起的实际问题:(i)供应链管理,尤其是交叉插件,以及(ii)社交网络中的网络优化和(iii)机制设计。 机器学习算法所需的数据将由Cleard和Ciena提供前两个应用程序,并且需要确定第三个组织/工业合作伙伴。
我的研究结果将为行业(例如Cleard和Ciena)提供高效和自动化的交叉插座/网络管理工具,不仅可以提高竞争力,而且还可以减少能源消耗和碳足迹。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jaumard, Brigitte其他文献
Energy-Efficient Service Function Chain Provisioning
- DOI:
10.1364/jocn.10.000114 - 发表时间:
2018-03-01 - 期刊:
- 影响因子:5
- 作者:
Huin, Nicolas;Tomassilli, Andrea;Jaumard, Brigitte - 通讯作者:
Jaumard, Brigitte
Optimum ConvergeCast Scheduling in Wireless Sensor Networks
- DOI:
10.1109/tcomm.2018.2848271 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:8.3
- 作者:
Bakshi, Mahesh;Jaumard, Brigitte;Narayanan, Lata - 通讯作者:
Narayanan, Lata
Jaumard, Brigitte的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jaumard, Brigitte', 18)}}的其他基金
Large-Scale and Big Data Optimization
大规模、大数据优化
- 批准号:
RGPIN-2017-06715 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Large-Scale and Big Data Optimization
大规模、大数据优化
- 批准号:
RGPIN-2017-06715 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Large-Scale and Big Data Optimization
大规模、大数据优化
- 批准号:
RGPIN-2017-06715 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Large-Scale and Big Data Optimization
大规模、大数据优化
- 批准号:
RGPIN-2017-06715 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Large-Scale and Big Data Optimization
大规模、大数据优化
- 批准号:
RGPIN-2017-06715 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Enhancing Lateness Management in Cross-Docking
加强交叉配送的延迟管理
- 批准号:
507396-2017 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Engage Grants Program
Large Scale Optimization with Applications in Communication Networks
大规模优化及其在通信网络中的应用
- 批准号:
36426-2012 - 财政年份:2016
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Large Scale Optimization with Applications in Communication Networks
大规模优化及其在通信网络中的应用
- 批准号:
36426-2012 - 财政年份:2015
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Large Scale Optimization with Applications in Communication Networks
大规模优化及其在通信网络中的应用
- 批准号:
36426-2012 - 财政年份:2014
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Large Scale Optimization with Applications in Communication Networks
大规模优化及其在通信网络中的应用
- 批准号:
36426-2012 - 财政年份:2013
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
面向大模型性能提升的提示词可视调优理论与方法
- 批准号:62302435
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向大规模盲源分离的高维度大尺寸张量分解方法研究
- 批准号:62071082
- 批准年份:2020
- 资助金额:54 万元
- 项目类别:面上项目
含规模化新能源接入的交直流大电网动态无功储备评估“时间-空间-优化”降维等值方法研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:
面向科学大装置超大规模数据流的定制计算研究
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:联合基金项目
利用Cas9大规模基因敲除技术在HIV-1潜伏细胞上筛选及鉴定与HIV潜伏相关的关键宿主基因
- 批准号:31771484
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Leveraging complementary big data methods and patient intervention designs to optimize neural markers of adolescent cannabis use
利用互补的大数据方法和患者干预设计来优化青少年大麻使用的神经标记
- 批准号:
10739527 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Quantifying the impact of vaccines on antibiotic use for respiratory infections in children
量化疫苗对儿童呼吸道感染抗生素使用的影响
- 批准号:
10606403 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Predictive modeling of cutaneous immune checkpoint inhibitor toxicities
皮肤免疫检查点抑制剂毒性的预测模型
- 批准号:
10590369 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Machine learning-based methods for phenotyping dementia patients from electronic health record data
基于机器学习的方法,根据电子健康记录数据对痴呆症患者进行表型分析
- 批准号:
10720916 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别: