Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
基本信息
- 批准号:RGPIN-2017-06410
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research area is finite fields and applications in coding theory and cryptography. My recent research has centered on the theoretical study of discrete objects/structures and their properties over finite fields, as well as on their applications to other branches of mathematics and information theory. These objects include polynomials and sequences over finite fields, which have a large number of applications in coding theory, communications and cryptography. This is a fascinating and vibrant area of research in the intersection of discrete math, number theory, theoretical computer science and information theory. Many open problems and conjectures over finite fields arise from useful problems in information theory. It is my long term vision to play a significant and lasting contribution to this area of research.
The combinatorial properties of polynomials such as permutations and value set sizes, arithmetic properties of polynomials such as irreducibility, primitivity, divisibility and factorization, as well as the pseudo-randomness of sequences, are central topics of fundamental research. For example, there has been an increasing demand for further studies of objects such as permutation polynomials, irreducible polynomials, primitive polynomials, and feedback shift register sequences due to their applications in block ciphers and stream ciphers, as well as signal sets in wireless communications. Indeed, the design of good S-boxes (permutations) which are resistant against linear/differential cryptanalysis requires useful special functions such as almost perfect nonlinear (APN) permutations; improving the complexity of list decoding algorithm for Reed-Solomon codes requires the further study of polynomials with prescribed ranges; the design of reliable stream ciphers requires good pseudo-random sequences; the implementation of linear feedback shift register (LFSR) sequences requires the understanding of existence of primitive polynomials with certain low weight (i.e., 3 or 5 nonzero coefficients) over the binary field.
My long term goal is thus two-fold: 1) to better understand the combinatorial and arithmetic properties of these fundamental objects over finite fields, and their construction, distribution and enumeration; 2) to better understand the interplay among different objects and properties over finite fields and find genuine applications such as constructing good codes and S-boxes. My scientific approach requires not only extensively theoretical efforts, but also massive computational experiments. This quest involves a combination of knowledge from combinatorics, number theory, algebra, computer science, and information theory. Positive solutions to some of these problems would not only have significant impact on the research community but also have direct technology advance.
拟议的研究领域是编码理论和密码学中的有限领域和应用。我最近的研究集中在离散对象/结构及其在有限领域的特性以及它们在数学和信息理论其他分支的应用。这些对象包括有限场上的多项式和序列,这些磁场在编码理论,通信和加密术中具有大量应用。这是离散数学,数量理论,理论计算机科学与信息理论的交集中的一个有趣而充满活力的研究领域。关于信息理论中有用的问题引起了许多有限领域的开放问题和猜想。我的长期愿景是为这一研究领域做出重大而持久的贡献。
多项式的组合特性,例如排列和值集大小,多项式的算术特性,例如不可约性,原始性,划分性和分解性和分解性以及序列的伪随身性,是基本研究的中心主题。例如,人们对诸如置换多项式,不可介绍的多项式,原始多项式和反馈转移寄存器序列等物体的进一步研究的需求越来越大,因为它们在块密码和流密码中的应用以及无线通信中的信号集。实际上,对线性/差分密码分析具有抗性的良好S盒(排列)的设计需要有用的特殊功能,例如几乎完美的非线性(APN)排列;改善芦苇 - 固体代码的列表解码算法的复杂性需要进一步研究具有规定范围的多项式。 可靠的流密码的设计需要良好的伪随机序列。 线性反馈移位寄存器(LFSR)序列的实现需要了解二进制场上具有一定重量(即3或5个非零系数)的原始多项式的存在。
因此,我的长期目标是两个方面:1)更好地理解这些基本物体对有限领域的组合和算术特性及其结构,分布和枚举; 2)更好地了解有限字段的不同对象和属性之间的相互作用,并找到诸如构建良好代码和S框之类的真实应用程序。我的科学方法不仅需要广泛的理论努力,还需要大规模的计算实验。这项追求涉及组合学,数字理论,代数,计算机科学和信息理论的知识结合。 这些问题中的某些问题的积极解决方案不仅会对研究界产生重大影响,而且还会有直接的技术进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wang, Qiang(Steven)其他文献
Wang, Qiang(Steven)的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wang, Qiang(Steven)', 18)}}的其他基金
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
finite fields and their applications
有限域及其应用
- 批准号:
312588-2012 - 财政年份:2016
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
finite fields and their applications
有限域及其应用
- 批准号:
312588-2012 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
finite fields and their applications
有限域及其应用
- 批准号:
312588-2012 - 财政年份:2014
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Finite fields transforms for software protection
软件保护的有限域变换
- 批准号:
461946-2013 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Engage Grants Program
finite fields and their applications
有限域及其应用
- 批准号:
312588-2012 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
农业知识文语转换歧义字段处理方法研究
- 批准号:61802411
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
中文阅读中歧义字段加工的认知与神经机制
- 批准号:31571125
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
手性Salen配合物催化与底物诱导的不对称多组分Kabachnik-Fields反应
- 批准号:21162008
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
蒙古语语法信息词典的建立及调试
- 批准号:60363005
- 批准年份:2003
- 资助金额:24.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Finite Fields and their Applications at Simon Fraser University
西蒙弗雷泽大学的有限域及其应用
- 批准号:
1905024 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual